# MOS INTEGRATED CIRCUIT $\mu$ PD753304

# **4-BIT SINGLE-CHIP MICROCONTROLLER**

## DESCRIPTION

JEC

The  $\mu$ PD753304 is one of the 75XL series 4-bit single-chip microcontroller chips and has a data processing capability comparable to that of an 8-bit microcontroller.

Since it inherits the 75X series CPU, it has upward compatibility.

While the conventional 75X series products with an on-chip LCD controller/driver use an 80-pin package, the  $\mu$ PD753304 is sold as a pellet/wafer to make it possible to be built into portable devices with an LCD display function, etc.

## For detailed function descriptions, refer to the following user's manual. $\mu {\rm PD753304}$ User's Manual: U12020E

## FEATURES

- RC oscillation circuit on chip
- Main system clock: fcc = 3.6 MHz (typical value with 6.8-kΩ external resistor connected. An internal 10-pF (typ.) capacitor is provided.)
  - Subsystem clock : fcT = 47 kHz (typ.) (Both a resistor and a capacitor are provided internally.)
- Processing can be started immediately after standby mode is released.
- Oscillation of the subsystem clock can be stopped in STOP mode.
- Supply voltage: VDD = 2.5 to 5.5 V
- On-chip memory
  - Program memory (ROM): 4096  $\times$  8 bits
  - Data memory (RAM) :  $256 \times 4$  bits
- · Variable instruction execution time function useful for power saving
  - 1.1, 2.2, 4.4, 17.8  $\mu$ s (in fcc = 3.6 MHz operation)
  - 85.1  $\mu$ s (in fct = 47 kHz operation)
- Programmable LCD controller/driver on chip
- Sold as a pellet/wafer to make it possible to be built into portable devices with an LCD display function

## APPLICATION

Small LCD display device, etc.

★ ORDERING INFORMATION

| Part Number    | Package |
|----------------|---------|
| μPD753304P-XXX | Pellet  |
| μPD753304W-XXX | Wafer   |

Caution The  $\mu$ PD753304 is sold as a pellet/wafer. However, an ES product in 42-pin ceramic shrink DIP is also available.

Remark XXX is a ROM code suffix.

For the pellet/wafer, consult NEC because an agreement concerning quality must be made.

The information in this document is subject to change without notice.

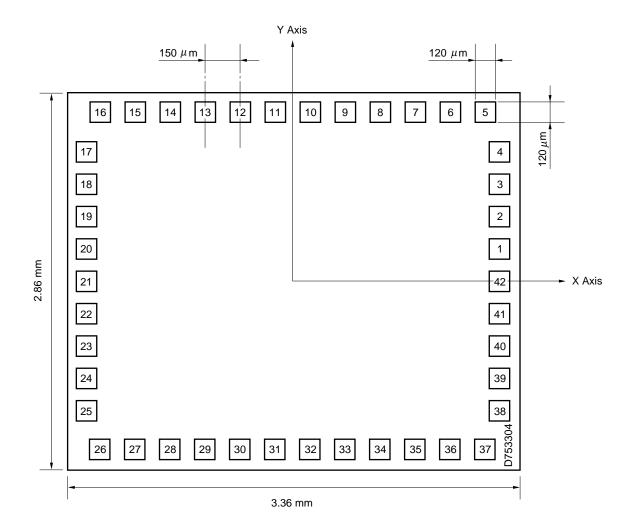
# FUNCTIONAL OUTLINE

| Parameter                        |                  |          | Function                                                                                                                                                                                                                                                            |  |  |  |
|----------------------------------|------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Instruction execution time       |                  | me       | <ul> <li>1.1, 2.2, 4.4, 17.8 μs (@ 3.6 MHz with main system clock)</li> <li>85.1 μs (@ 47 kHz with subsystem clock)</li> </ul>                                                                                                                                      |  |  |  |
| On-chip memory ROM               |                  |          | 4096 × 8 bits                                                                                                                                                                                                                                                       |  |  |  |
|                                  |                  | RAM      | 256 × 4 bits                                                                                                                                                                                                                                                        |  |  |  |
| General-purpose register         |                  | ter      | <ul> <li>4-bit operation: 8 × 4 banks</li> <li>8-bit operation: 4 × 4 banks</li> </ul>                                                                                                                                                                              |  |  |  |
| Input/<br>output port            | CMOS<br>input/ou | put      | 12 On-chip pull-up resistors which can be specified by software: 4<br>Also used for segment pins: 4                                                                                                                                                                 |  |  |  |
| LCD controller/driver            |                  |          | <ul> <li>Segment selection: 20/24 segments (can be changed to CMOS input/output port in 4 time-unit; max. 4)</li> <li>Display mode selection: Static 1/2 duty (1/2 bias) 1/3 duty (1/2 bias) 1/3 duty (1/2 bias) 1/3 duty (1/3 bias) 1/4 duty (1/3 bias)</li> </ul> |  |  |  |
|                                  |                  |          | LCD display modes can be selected by mask option                                                                                                                                                                                                                    |  |  |  |
| Timer                            |                  |          | <ul> <li>3 channels</li> <li>8-bit timer counter: 1 channel (with subclock source input function)</li> <li>Basic interval timer/watchdog timer: 1 channel</li> <li>Watch timer: 1 channel</li> </ul>                                                                |  |  |  |
| Clock output                     | t (PCL)          |          | • $\Phi$ , 3.6 MHz, 450 kHz, 225 kHz (@ 3.6 MHz with main system clock)                                                                                                                                                                                             |  |  |  |
| Buzzer outp                      | ut (BUZ)         |          | <ul> <li>2.94, 5.88, 47 kHz (@ 47 kHz with subsystem clock)</li> <li>1.76, 3.52, 28.13 kHz (@ 3.6 MHz with main system clock)</li> </ul>                                                                                                                            |  |  |  |
| Vectored int                     | errupts          |          | External: 1, Internal: 2                                                                                                                                                                                                                                            |  |  |  |
| Test input                       |                  |          | Internal: 1                                                                                                                                                                                                                                                         |  |  |  |
| System clock oscillation circuit |                  |          | <ul> <li>Main system clock oscillation RC oscillation circuit (with external resistor and 10 pF (typ.) on-chip capacitor)</li> <li>Subsystem clock oscillation RC oscillation circuit (with on-chip resistor and capacitor)</li> </ul>                              |  |  |  |
| Standby fun                      | ction            |          | STOP mode/HALT mode                                                                                                                                                                                                                                                 |  |  |  |
| Supply volta                     | ge               |          | V <sub>DD</sub> = 2.5 to 5.5 V                                                                                                                                                                                                                                      |  |  |  |
| Operating a                      | mbient terr      | perature | $T_{A} = -10 \text{ to } +60 ^{\circ}\text{C}$                                                                                                                                                                                                                      |  |  |  |
| Package                          |                  |          | <ul> <li>Volume production product: Pellet/wafer</li> <li>ES product (for evaluation): 42-pin ceramic shrink DIP (600 mil)</li> </ul>                                                                                                                               |  |  |  |

 $\star$ 

 $\star$ 

# TABLE OF CONTENTS


| 1.  | PIN CONFIGURATION                                             |
|-----|---------------------------------------------------------------|
| 2.  | BLOCK DIAGRAM                                                 |
| 3.  | PIN FUNCTIONS                                                 |
|     | 3.1 Port Pins                                                 |
|     | 3.2 Non-Port Pins                                             |
|     | 3.3 Pin Input/Output Circuits                                 |
|     | 3.4 Recommended Connections for Unused Pins                   |
| 4.  | SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE           |
|     | 4.1 Difference between Mk I and Mk II Modes                   |
|     | 4.2 Setting Method of Stack Bank Select Register (SBS)14      |
| 5.  | MEMORY CONFIGURATION15                                        |
| 6.  | PERIPHERAL HARDWARE FUNCTION                                  |
|     | 6.1 Digital I/O Port                                          |
|     | 6.2 Clock Generator                                           |
|     | 6.3 Clock Output Circuit                                      |
|     | 6.4 Basic Interval Timer/Watchdog Timer                       |
|     | 6.5 Watch Timer                                               |
|     | 6.6 Timer Counter                                             |
|     | 6.7 LCD Controller/Driver                                     |
| 7.  | INTERRUPT FUNCTION AND TEST FUNCTION25                        |
| 8.  | STANDBY FUNCTION                                              |
| 9.  | RESET FUNCTION                                                |
| 10. | MASK OPTION                                                   |
| 11. | INSTRUCTION SET                                               |
| 12. | ELECTRICAL SPECIFICATIONS41                                   |
| 13. | CHARACTERISTIC CURVE (reference)                              |
| AP  | PENDIX A. $\mu$ PD75308B, 753108 AND 753304 FUNCTIONAL LIST49 |
| AP  | PENDIX B. DEVELOPMENT TOOLS51                                 |
| AP  | PENDIX C. RELATED DOCUMENTS                                   |

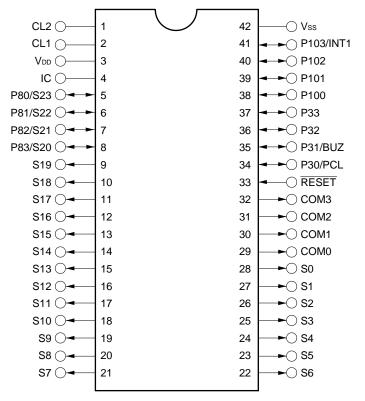
# 1. PIN CONFIGURATION

- ★ Pin configuration of volume production product (Pad configuration)
  - · Pellet

 $\mu$ PD753304P-XXX

 $\begin{array}{rll} \mbox{Chip size} & : & 3.36 \times 2.86 \mbox{ mm}^2 \\ \mbox{Pad intervals}: & 150 \mbox{ } \mu \mbox{m} \\ \mbox{Pad size} & : & 120 \times 120 \mbox{ } \mu \mbox{m} \end{array}$ 




| No. | Pin Name | X Axis  | Y Axis | No. | Pin Name  | X Axis | Y Axis  |
|-----|----------|---------|--------|-----|-----------|--------|---------|
| 1   | CL2      | 1549    | 311    | 22  | S6        | -1549  | -351.5  |
| 2   | CL1      | 1549    | 540    | 23  | S5        | -1549  | -597.5  |
| 3   | Vdd      | 1549    | 769    | 24  | S4        | -1549  | -843.5  |
| 4   | IC       | 1549    | 998    | 25  | S3        | -1549  | -1089.5 |
| 5   | P80/S23  | 1422.5  | 1299   | 26  | S2        | -1301  | -1299   |
| 6   | P81/S22  | 1169.5  | 1299   | 27  | S1        | -1055  | -1299   |
| 7   | P82/S21  | 916.5   | 1299   | 28  | SO        | -809   | -1299   |
| 8   | P83/S20  | 663.5   | 1299   | 29  | COM0      | -563   | -1299   |
| 9   | S19      | 410.5   | 1299   | 30  | COM1      | -317   | -1299   |
| 10  | S18      | 157.5   | 1299   | 31  | COM2      | -71    | -1299   |
| 11  | S17      | -216.5  | 1299   | 32  | COM3      | 289    | -1299   |
| 12  | S16      | -469.5  | 1299   | 33  | RESET     | 518    | -1299   |
| 13  | S15      | -715.5  | 1299   | 34  | P30/PCL   | 747    | -1299   |
| 14  | 514      | -961.5  | 1299   | 35  | P31/BUZ   | 976    | -1299   |
| 15  | S13      | -1207.5 | 1299   | 36  | P32       | 1205   | -1209   |
| 16  | S12      | -1453.5 | 1299   | 37  | P33       | 1434   | -1299   |
| 17  | S11      | -1549   | 992.5  | 38  | P100      | 1549   | -997    |
| 18  | S10      | -1549   | 746.5  | 39  | P101      | 1549   | -768    |
| 19  | S9       | -1549   | 500.5  | 40  | P102      | 1549   | -539    |
| 20  | S8       | -1549   | 254.5  | 41  | P103/INT1 | 1549   | -310    |
| 21  | S7       | -1549   | -105.5 | 42  | Vss       | 1549   | 0.5     |

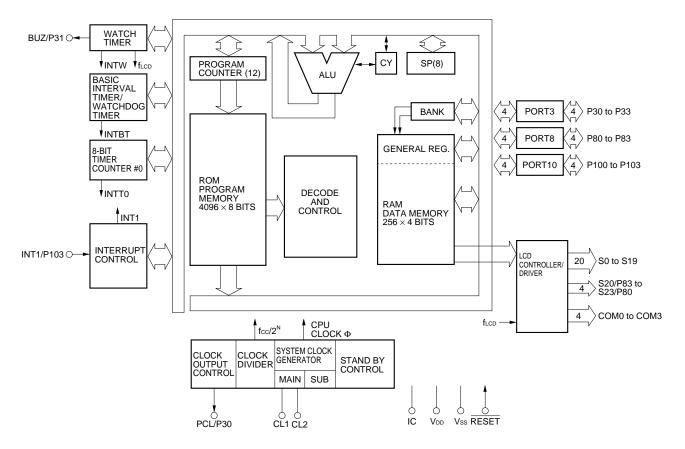
Pad Coordinates (unit: µm: pad center coordinates)

Caution Connect the rear side of the pellet to GND.

## • Pin configuration of ES product (Top View)

· 42-pin ceramic shrink DIP (600 mil)




IC: Internally Connected (Connect directly to VDD.)

Caution The  $\mu$ PD753304 is sold as pellet/wafer. The above pin configuration applies to an ES product.

## Pin Name

| BUZ       | : Buzzer Clock                 | P100-P103 : Port10 |             |
|-----------|--------------------------------|--------------------|-------------|
| CL1, CL2  | : RC Oscillator                | PCL : Programm     | nable Clock |
| COM0-COM3 | : Common Output0-3             | RESET : Reset      |             |
| IC        | : Internally Connected         | S0-S23 : Segment   | Output0-23  |
| INT1      | : External Vectored Interrupt1 | VDD : Positive F   | ower Supply |
| P30-P33   | : Port3                        | Vss : Ground       |             |
| P80-P83   | : Port8                        |                    |             |

# 2. BLOCK DIAGRAM



# 3. PIN FUNCTIONS

# 3.1 Port Pins

|   | Pin Name | Input/output | Dual-<br>Function Pin | Function                                                       | 8-Bit<br>I/O | After Reset         | I/O Circuit<br>Type <sup>Note 1</sup> |
|---|----------|--------------|-----------------------|----------------------------------------------------------------|--------------|---------------------|---------------------------------------|
| * | P30      | Input/output | PCL                   | Programmable 4-bit input/output port                           | Х            | Input Note 2        | E                                     |
|   | P31      |              | BUZ                   | (PORT3)<br>Input/output specifiable bit-wise                   |              |                     |                                       |
|   | P32      |              | —                     | Input/output mode after reset specifiable (mask option) Note 2 |              |                     |                                       |
|   | P33      |              | —                     |                                                                |              |                     |                                       |
|   | P80      | Input/output | S23                   | 4-bit input/output port (PORT8)                                | Х            | Input               | Н                                     |
|   | P81      |              | S22                   |                                                                |              |                     |                                       |
|   | P82      |              | S21                   |                                                                |              |                     |                                       |
|   | P83      |              | S20                   |                                                                |              |                     |                                       |
| * | P100     | Input/output |                       | Programmable 4-bit input/output port                           | х            | Input with          | E-B                                   |
|   | P101     |              | —                     | (PORT10)<br>Input/output specifiable bit-wise                  |              | pull-up<br>resistor |                                       |
|   | P102     |              | —                     | Connection of on-chip pull-up resistor                         |              |                     |                                       |
|   | P103     |              | INT1                  | specifiable in 4-bit units by software                         |              |                     | (F)-A                                 |

**Notes 1.** O denotes Schmitt trigger input.

- 2. Input/output mode after reset can be specified by mask option. For details, refer to Table 3-1.
- \*

\*

## Table 3-1. State after Reset by Mask Option of Port 3

|           | State after Reset |                  |                   |  |  |
|-----------|-------------------|------------------|-------------------|--|--|
| Pin Names | Mask Option <1>   | Mask Option <2>  | Mask Option <3>   |  |  |
| P30/PCL   | Input             | Low-level output | Low-level output  |  |  |
| P31/BUZ   |                   |                  |                   |  |  |
| P32       |                   |                  |                   |  |  |
| P33       |                   |                  | High-level output |  |  |

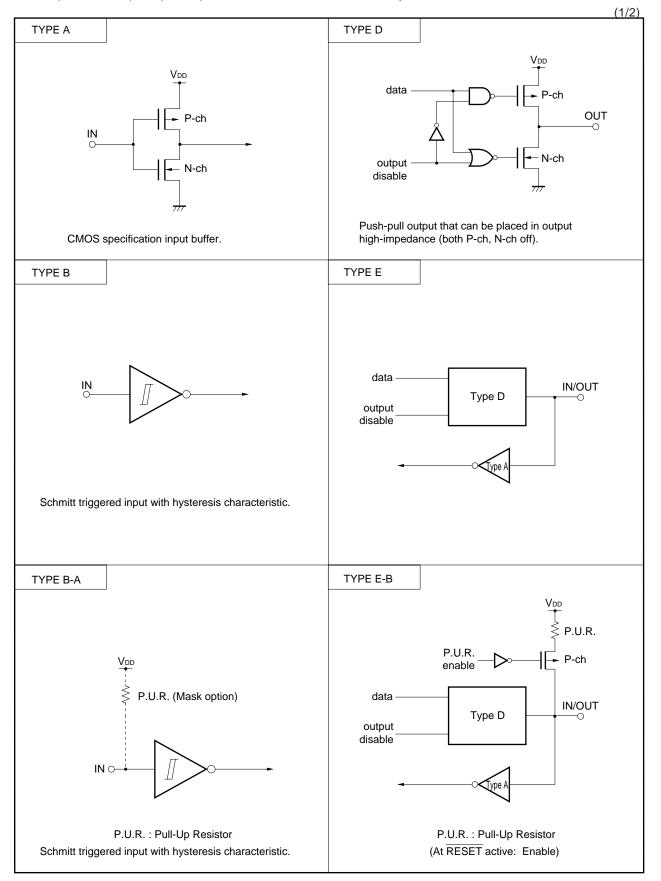
# 3.2 Non-Port Pins

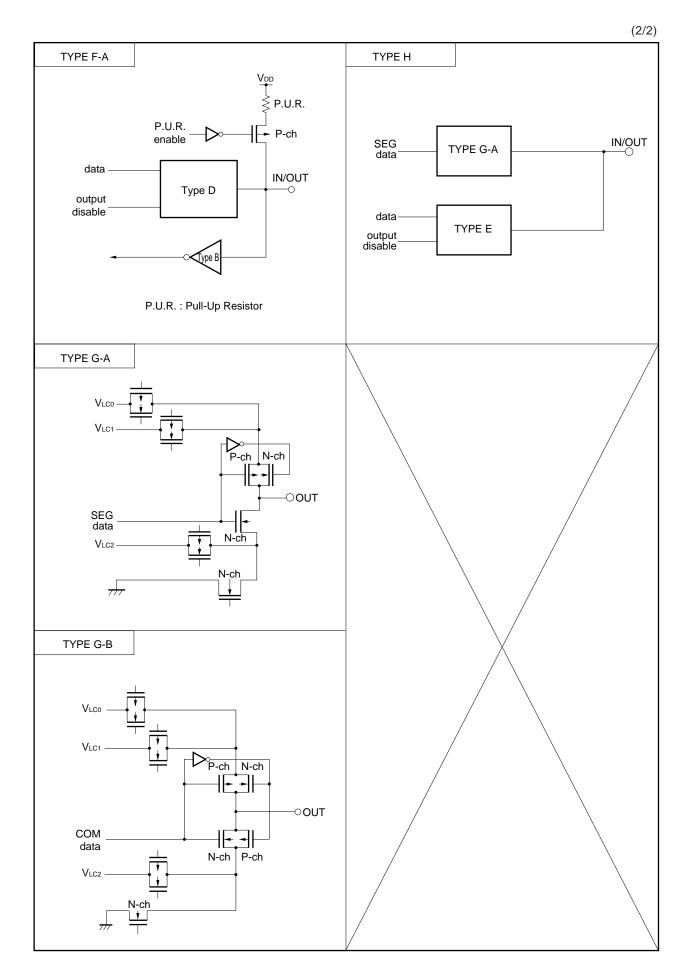
| × |  |
|---|--|
| ~ |  |
|   |  |
|   |  |

\*

| + |  |
|---|--|
| × |  |

| Pin Name  | Input/output | Dual-<br>Function Pin | Function                                                                                      |              | After Reset                       | I/O Circuit<br>Type <sup>Note 1</sup> |
|-----------|--------------|-----------------------|-----------------------------------------------------------------------------------------------|--------------|-----------------------------------|---------------------------------------|
| PCL       | Output       | P30                   | Clock output                                                                                  |              | Input Note 2                      | E                                     |
| BUZ       |              | P31                   | Arbitrary frequency output (for buzze clock trimming)                                         | rs or system |                                   |                                       |
| INT1      | Input        | P103                  | Edge detected vectored interrupt Asynchro-<br>input (detected edge is selectable) nous        |              | Input with<br>pull-up<br>resistor | (F)-A                                 |
| S0-S19    | Output       | _                     | Segment signal output                                                                         |              | High-<br>impedance                | G-B                                   |
| S20-S23   | Output       | P83-P80               | Segment signal output                                                                         |              | Input                             | Н                                     |
| COM0-COM3 | Output       | _                     | Common signal output                                                                          |              | High-<br>impedance                | G-B                                   |
| CL1       | _            | _                     | Main system clock oscillation resistor (R)<br>connection pin. No external clock can be input. |              | _                                 | _                                     |
| CL2       | _            | -                     |                                                                                               |              |                                   |                                       |
| RESET     | Input        | _                     | System reset input (low level active). On-chip pull-up resistor specifiable (mask option)     |              | _                                 | B-A                                   |
| IC        | _            | _                     | Internally connected. Connect directly to VDD.                                                |              | _                                 |                                       |
| Vdd       |              |                       | Positive power supply                                                                         |              | _                                 |                                       |
| Vss       | _            | _                     | Ground potential                                                                              |              | _                                 | _                                     |


**Notes 1.** Odenotes Schmitt trigger input.


★

2. Input/output mode after reset can be specified by mask option. For details, refer to Table 3-1.

# 3.3 Pin Input/Output Circuits

The  $\mu$ PD753304 pin input/output circuits are shown schematically.





# 3.4 Recommended Connections for Unused Pins

| Pin             | Recommended Connection                                                                       |
|-----------------|----------------------------------------------------------------------------------------------|
| P30/PCL         | Input state: Connect independently to Vss or VDD                                             |
| P31/BUZ         | via resistor                                                                                 |
| P32             | Output state: Leave open                                                                     |
| P33             |                                                                                              |
| P100            |                                                                                              |
| P101            |                                                                                              |
| P102            |                                                                                              |
| P103/INT1       |                                                                                              |
| S0-S19          | Leave open                                                                                   |
| COM0-COM3       |                                                                                              |
| S20/P83-S23/P80 | Input state: Connect independently to Vss or VDD<br>via resistor<br>Output state: Leave open |
| IC              | Connect directly to VDD                                                                      |

# Table 3-2. List of Recommended Connections for Unused Pins

## 4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

## 4.1 Difference between Mk I and Mk II Modes

The CPU of the  $\mu$ PD753304 has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by bit 3 of the Stack Bank Select register (SBS).

- Mk I mode: Can be used in the 75XL CPU with a ROM capacity of up to 16K bytes.
- Mk II mode: Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16K bytes.

|                                                      | Mk I mode        | Mk II mode       |
|------------------------------------------------------|------------------|------------------|
| Number of stack bytes<br>for subroutine instructions | 2 bytes          | 3 bytes          |
| BRA laddr1 instruction<br>CALLA laddr1 instruction   | Not available    | Available        |
| CALL laddr instruction                               | 3 machine cycles | 4 machine cycles |
| CALLF !faddr instruction                             | 2 machine cycles | 3 machine cycles |

#### Table 4-1. Differences between Mk I Mode and Mk II Mode

Caution The Mk II mode supports a program area which exceeds 16K bytes in the 75X and 75XL series. This mode enhances the software compatibility with products which have more than 16K bytes.

When Mk II mode is selected, the number of stack bytes (usable area) in the execution of a subroutine call instruction increases by 1 per stack compared to Mk I mode. Furthermore, when a CALL !addr, or CALLF !faddr instruction is used, each instruction takes another machine cycle. Therefore, when more importance is attached to RAM utilization or throughput than software compatibility, use the Mk I mode.

# 4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format. The SBS is set by a 4-bit memory manipulation instruction. When using the Mk I mode, the SBS must be initialized to 1000B at the beginning of a program. When using the Mk II mode, it must be initialized to 0000B.

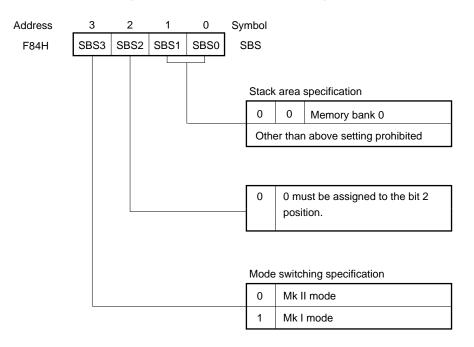
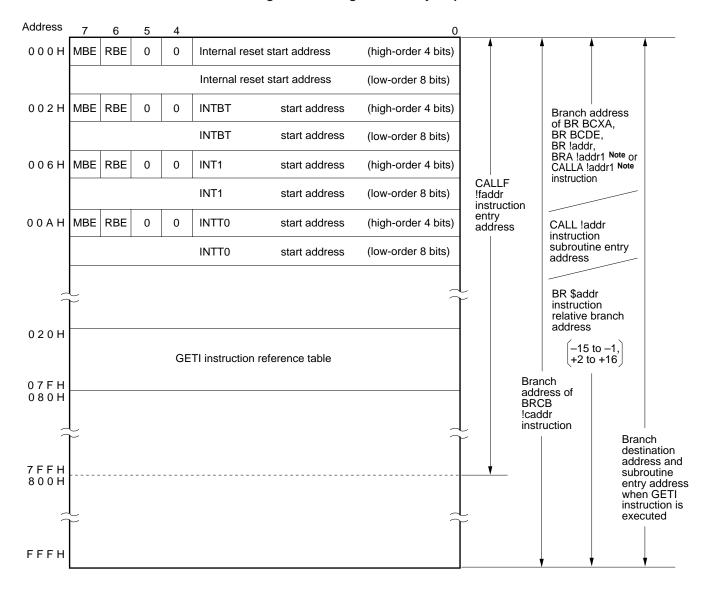



Figure 4-1. Stack Bank Select Register Format


Caution Since SBS. 3 is set to "1" after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to "0" to select the Mk II mode.

# 5. MEMORY CONFIGURATION

- Program Memory (ROM)  $\dots$  4096  $\times$  8 bits
  - Addresses 0000H and 0001H
     Vector table wherein the program start address and the values set for the RBE and MBE at the time a RESET signal is generated are written. Reset and start are possible at an any address.
  - Addresses 0002H to 000DH

Vector table wherein the program start address and values set for the RBE and MBE by the vectored interrupts are written. Interrupt execution can be started at an any address.

- Addresses 0020H to 007FH
   Table area referenced by the GETI instruction Note.
  - **Note** The GETI instruction realizes a 1-byte instruction on behalf of an any 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the program steps.
- Data Memory (RAM)
  - Data area ... 256 words  $\times$  4 bits (000H to 0FFH)
  - Peripheral hardware area ... 128 words  $\times$  4 bits (F80H to FFFH)



#### Figure 5-1. Program Memory Map

Note Can be used in Mk II mode only.

**Remark** In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

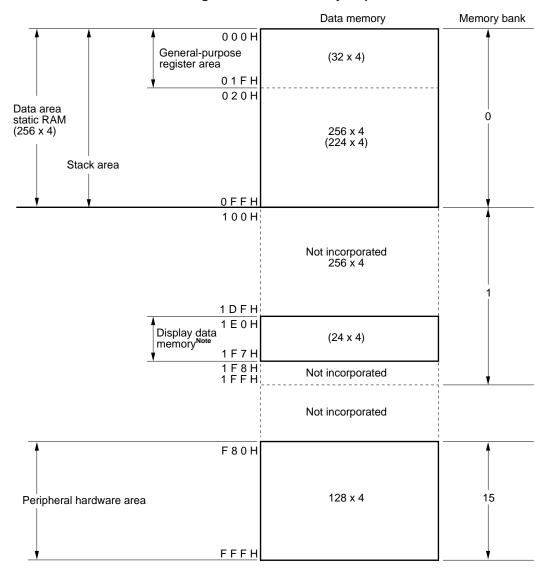



Figure 5-2. Data Memory Map

Note Write only.

# 6. PERIPHERAL HARDWARE FUNCTION

## 6.1 Digital I/O Port

There are three kinds of I/O port.

• CMOS input/output ports (PORT 3, 8, 10): 12

| Port   | Function  | Operation & features                                    | Remarks                             |
|--------|-----------|---------------------------------------------------------|-------------------------------------|
| PORT3  | 4-bit I/O | Can be set to input mode or output mode in 1-bit unit.  | Also used for the PCL and BUZ pins. |
| PORT8  |           | Can be set to input mode or output mode in 4-bit units. | Also used for the S20 to S23 pins.  |
| PORT10 |           | Can be set to input mode or output mode in 1-bit unit.  | Also used for the INT1 pin.         |

## 6.2 Clock Generator

The clock generator is a device that generates the clock fed to peripheral hardware on the CPU and is configured as shown in Figure 6-1.

The clock generator operates according to how the processor clock control register (PCC) and system clock control register (SCC) are set.

There are two kinds of clocks, main system clock and subsystem clock. The instruction execution time can also be changed.

- 1.1, 2.2, 4.4, 17.8 μs (main system clock: in 3.6-MHz operation)
- 85.1  $\mu$ s (subsystem clock: in 47-kHz operation)

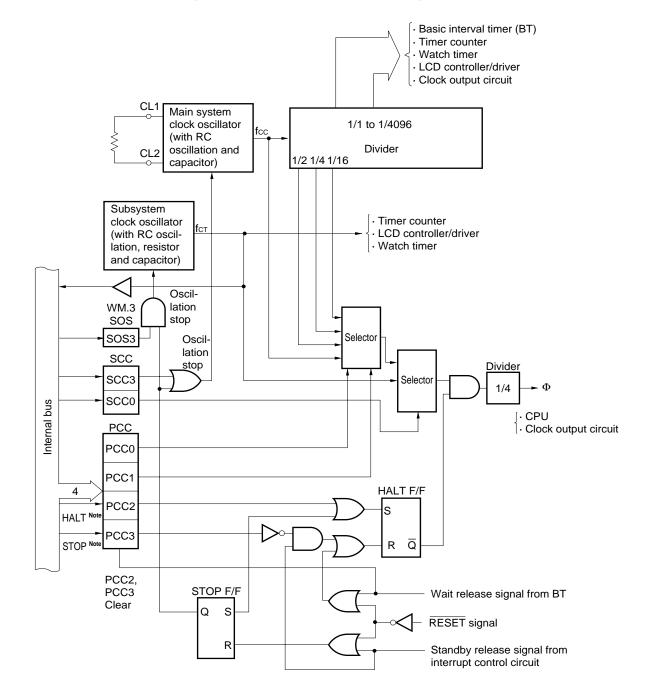
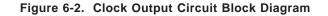
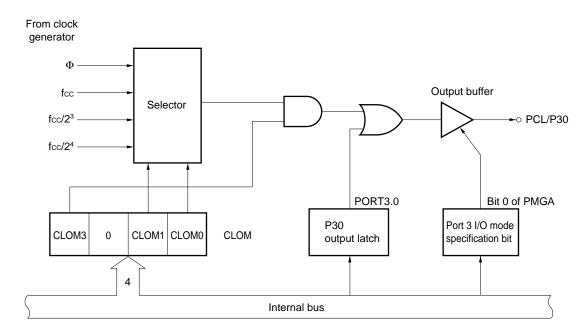



Figure 6-1. Clock Generator Block Diagram

#### Note Instruction execution


**Remarks 1.** fcc = Main system clock frequency


- 2. fxt = Subsystem clock frequency
- **3.**  $\Phi = CPU clock$
- 4. PCC: Processor Clock Control Register
- 5. SCC: System Clock Control Register
- 6. One clock cycle (tcy) of the CPU clock is equal to one machine cycle of the instruction.

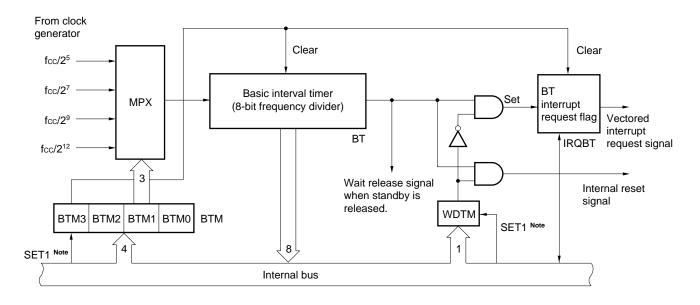
# 6.3 Clock Output Circuit

The clock output circuit is provided to output the clock pulses from the PCL/P30 pin to the remote control waveform outputs and peripheral LSI's.

★ • Clock Output (PCL): Φ, 3.6 MHz, 450 kHz, 225 kHz (in 3.6-MHz operation)






**Remark** Special care has been taken in designing the chip so that small-width pulses may not be output when switching clock output enable/disable.

# 6.4 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.

- Interval timer operation to generate a reference time interrupt
- Watchdog timer operation to detect an inadvertent program loop and reset the CPU
- Reads the contents of counting



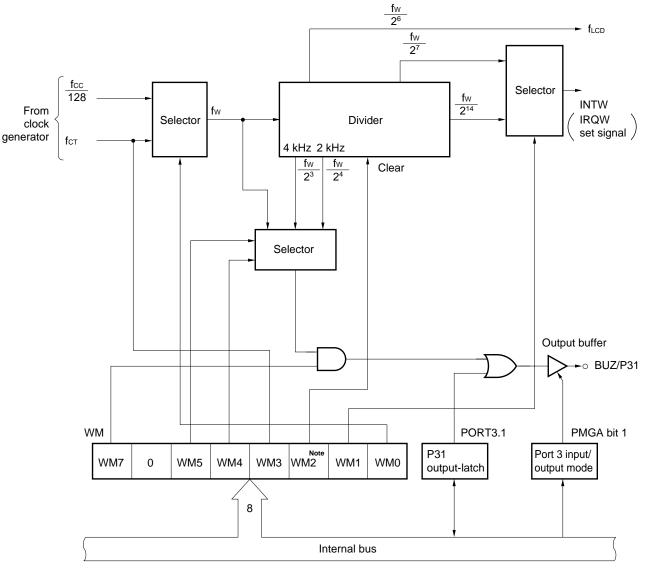


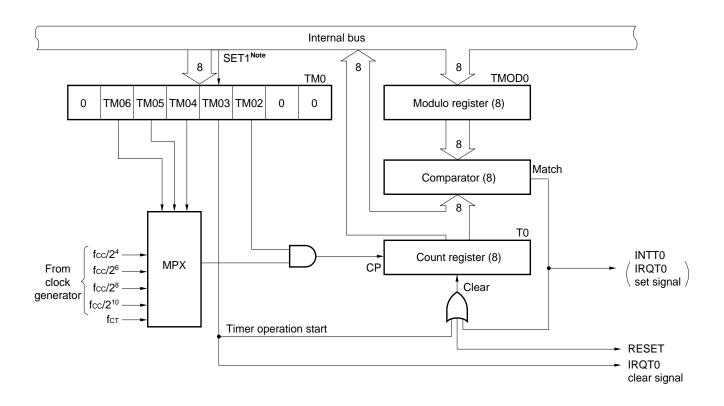
Note Instruction execution

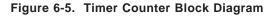
# 6.5 Watch Timer

The  $\mu$ PD753304 has one watch timer channel which has the following functions.

- Sets the test flag (IRQW) at fw/214 intervals. The standby mode can be released by the IRQW.
- Convenient for program debugging and checking as interval becomes 128 times longer (fw/2<sup>7</sup>) with the fast feed mode.
- Outputs the frequencies (fw, fw/2<sup>3</sup>, fw/2<sup>4</sup>) to the BUZ/P31 pin, usable for buzzer and trimming of system clock frequencies.
- Clears the frequency divider to make the watch start with zero seconds.





Figure 6-4. Watch Timer Block Diagram


Note Set WM2 to 1 when using the LCD controller/driver.

## 6.6 Timer Counter

The  $\mu$ PD753304 has one channel of timer counter. Its configuration is shown in Figure 6-5. The timer counter has the following functions.

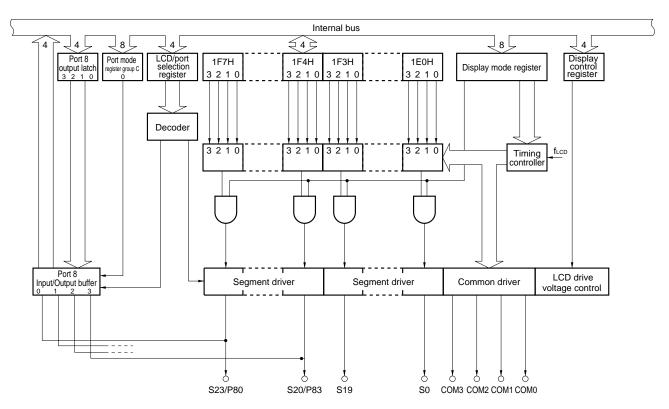
- Programmable interval timer operation
- Read the count value.





Note Instruction execution

Caution When setting data to the TM0, be sure to set bits 0, 1, 7 to 0.


# 6.7 LCD Controller/Driver

The  $\mu$ PD753304 incorporates a display controller which generates segment and common signals according to the display data memory contents and incorporates segment and common drivers which can drive the LCD panel directly.

The  $\mu$ PD753304 LCD controller/driver has the following functions:

- Display data memory is read automatically by DMA operation and segment and common signals are generated.
- Display mode can be selected from among the following five:
  - <1> Static
  - <2> 1/2 duty (time multiplexing by 2), 1/2 bias
  - <3> 1/3 duty (time multiplexing by 3), 1/2 bias
  - <4> 1/3 duty (time multiplexing by 3), 1/3 bias
  - <5> 1/4 duty (time multiplexing by 4), 1/3 bias
- A frame frequency can be selected from among four in each display mode.
- A maximum of 24 segment signal output pins (S0 to S23) and four common signal output pins (COM0 to COM3).
- The segment signal output pins (S20 to S23) can be changed to the I/O ports (PORT8).
- LCD display modes can be selected (mask option).
- It can also operate by using the subsystem clock.





# 7. INTERRUPT FUNCTION AND TEST FUNCTION

The  $\mu$ PD753304 has three different interrupt sources and one types of test source. The interrupt control circuit of the  $\mu$ PD753304 has the following functions.

## (1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the interrupt enable flag (IExxx) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQxxx). An interrupt generation can be checked by software.
- Release the standby mode. An interrupt to be released can be selected by the interrupt enable flag.

## (2) Test function

- Test request flag (IRQxxx) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

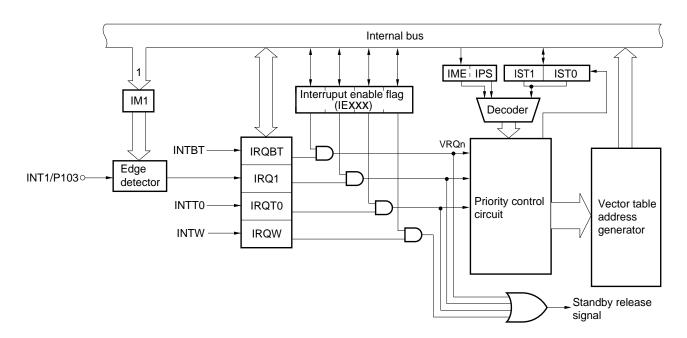
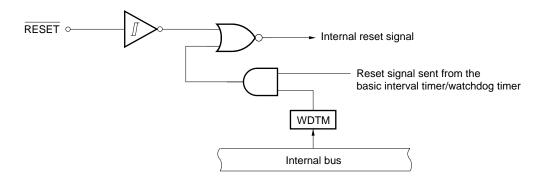



Figure 7-1. Interrupt Control Circuit Block Diagram

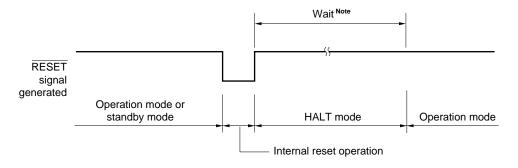
# 8. STANDBY FUNCTION

In order to reduce power dissipation while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the  $\mu$ PD753304.


| Item Mode                        |                                         | STOP mode                                                                                                                                                              | HALT mode                                                                                                                                                             |  |
|----------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Set instruction                  |                                         | STOP instruction                                                                                                                                                       | HALT instruction                                                                                                                                                      |  |
| System clo                       | ck for setting                          | Can be set by either main system clock or subsystem clock.                                                                                                             |                                                                                                                                                                       |  |
| Operating Clock generator status |                                         | Oscillation of main system clock is<br>stopped. Setting the sub oscillation<br>circuit stop enable flag (SOS.3) to 1 also<br>stops oscillation of the subsystem clock. | Only CPU clock $\Phi$ is stopped (oscillation continues.)                                                                                                             |  |
|                                  | Basic interval timer/<br>watchdog timer | Operation stopped                                                                                                                                                      | Operates only when main system clock<br>is oscillating<br>BT mode : Sets IRQBT at reference<br>time intervals<br>WT mode: Generates reset signal<br>when BT overflows |  |
|                                  | Timer counter                           | Operation possible only when SOS.3 is set to 0 and $f_{CT}$ is selected as count clock.                                                                                | Operation impossible only when a<br>divided main system clock is selected<br>as count clock when the main system<br>clock is stopped.                                 |  |
|                                  | LCD control/driver                      | Operation possible only when SOS.3 is set to 0 and $f_{\text{CT}}$ is selected as LCDCL.                                                                               | Operation possible                                                                                                                                                    |  |
|                                  | Watch timer                             | Operation possible only when SOS.3 is set to 0 and fcT is selected as count clock.                                                                                     | Operation possible                                                                                                                                                    |  |
|                                  | External interrupt                      | Operation possible only when SOS.3 is set to 0.                                                                                                                        |                                                                                                                                                                       |  |
|                                  | CPU                                     | Operation stopped                                                                                                                                                      |                                                                                                                                                                       |  |
| Release signal                   |                                         | Generation of an interrupt request signal from hardware whose operation is enabled by an interrupt enable flag or RESET signal.                                        |                                                                                                                                                                       |  |

| Table 8-1. | Operation | Status | in | Standby | Mode |
|------------|-----------|--------|----|---------|------|
|------------|-----------|--------|----|---------|------|

# 9. RESET FUNCTION


There are two reset inputs: external RESET signal and reset signal sent from the basic interval timer/watchdog timer. When either one of the reset signals are input, an internal reset signal is generated. Figure 9-1 shows the circuit diagram of the above two inputs.





Generation of the RESET signal initializes each device as listed in Table 9-1. Figure 9-2 shows the timing chart of the reset operation.





**Note** 56/fcc (15.6 μs: @ 3.6-MHz operation)

| Hardware                         |                   | Hardware                             | RESET signal generation<br>in the standby mode                                                                                            | RESET signal generation<br>in operation                                                                                                   |
|----------------------------------|-------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Program counter (PC)             |                   | er (PC)                              | Sets the low-order 4 bits of<br>program memory's address<br>0000H to the PC11-PC8 and the<br>contents of address 0001H to<br>the PC7-PC0. | Sets the low-order 4 bits of<br>program memory's address<br>0000H to the PC11-PC8 and the<br>contents of address 0001H to<br>the PC7-PC0. |
| PSW                              | Carry             | r flag (CY)                          | Held                                                                                                                                      | Undefined                                                                                                                                 |
|                                  | Skip              | flag (SK0 to SK2)                    | 0                                                                                                                                         | 0                                                                                                                                         |
|                                  | Interr            | upt status flag (IST0)               | 0                                                                                                                                         | 0                                                                                                                                         |
|                                  | Bank              | enable flag (MBE, RBE)               | Sets the bit 6 of program<br>memory's address 0000H to the<br>RBE and bit 7 to the MBE.                                                   | Sets the bit 6 of program<br>memory's address 0000H to the<br>RBE and bit 7 to the MBE.                                                   |
| Stack pointer (SP)               |                   | SP)                                  | Undefined                                                                                                                                 | Undefined                                                                                                                                 |
| Stack bank select register (SBS) |                   | ect register (SBS)                   | 1000B                                                                                                                                     | 1000B                                                                                                                                     |
| Data me                          | Data memory (RAM) |                                      | Held                                                                                                                                      | Undefined                                                                                                                                 |
| General-                         | purpo             | se register (X, A, H, L, D, E, B, C) | Held                                                                                                                                      | Undefined                                                                                                                                 |
| Bank sel                         | lect reg          | gister (MBS, RBS)                    | 0, 0                                                                                                                                      | 0, 0                                                                                                                                      |
| Basic inte                       | erval             | Counter (BT)                         | Undefined                                                                                                                                 | Undefined                                                                                                                                 |
| timer/wate                       | chdog             | Mode register (BTM)                  | 0                                                                                                                                         | 0                                                                                                                                         |
| timer                            |                   | Watchdog timer enable flag (WDTM)    | 0                                                                                                                                         | 0                                                                                                                                         |
| Timer                            |                   | Counter (T0)                         | 0                                                                                                                                         | 0                                                                                                                                         |
| counter                          | (T0)              | Modulo register (TMOD0)              | FFH                                                                                                                                       | FFH                                                                                                                                       |
|                                  |                   | Mode register (TM0)                  | 0                                                                                                                                         | 0                                                                                                                                         |

| Table 9-1. | Status of Each  | Device After   | Reset (1/2) |
|------------|-----------------|----------------|-------------|
|            | otatuo ol Edoli | 201100 / 11101 |             |

|                  | Hardware                                      | RESET signal generation in the standby mode | RESET signal generation in operation |
|------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------|
| Watch timer      | Mode register (WM)                            | 0                                           | 0                                    |
| Clock generator, | Processor clock control register (PCC)        | 0                                           | 0                                    |
| clock output     | System clock control register (SCC)           | 0                                           | 0                                    |
| circuit          | Clock output mode register (CLOM)             | 0                                           | 0                                    |
| Subsystem clock  | oscillator control register (SOS)             | 0                                           | 0                                    |
| LCD controller/  | Display mode register (LCDM)                  | 0                                           | 0                                    |
| driver           | Display control register (LCDC)               | 0                                           | 0                                    |
|                  | LCD/port selection register (LPS)             | 0                                           | 0                                    |
| Interrupt        | Interrupt request flag (IRQxxx)               | Reset (0)                                   | Reset (0)                            |
| function         | Interrupt enable flag (IExxx)                 | 0                                           | 0                                    |
|                  | Interrupt priority select register (IPS)      | 0                                           | 0                                    |
|                  | INT1 mode registers (IM1)                     | 0                                           | 0                                    |
| Digital port     | Output buffer (P30-P33)                       | On                                          | On                                   |
|                  | Output buffer (P80-P83, P100-P103)            | Off                                         | Off                                  |
|                  | Output latch<br>(P30-P32, P80-P83, P100-P103) | Cleared (0)                                 | Cleared (0)                          |
|                  | Output latch (P33)                            | Set (1)                                     | Set (1)                              |
|                  | I/O mode registers (PMGA)                     | 0FH                                         | 0FH                                  |
|                  | I/O mode registers (PMGC, D)                  | 00H                                         | 00H                                  |
|                  | Pull-up resistor setting register (POGB)      | 01H                                         | 01H                                  |

Table 9-1. Status of Each Device After Reset (2/2)

# 10. MASK OPTION

The  $\mu$ PD753304 has the following mask options.

- RESET pin mask option
  - An on-chip pull-up resistor can be selected.
  - <1> Specifies an on-chip pull-up resistor.
  - <2> Specifies no on-chip pull-up resistor.
- ★ LCD display mode mask option
  - LCD display modes can be selected.
  - <1> Static display mode (BIAS-VLC0 shorted, VLC0 VLC1 opened)
  - <2> 1/2 bias mode (BIAS-VLC0 shorted, VLC1 VLC2 shorted)
  - <3> 1/3 bias mode (BIAS-VLC0 shorted)
  - Standby function mask option
    - Wait time can be selected after STOP mode is released.
    - <1> 512/fcc (142  $\mu$ s: in 3.6 MHz operation)
    - <2> No waits
- ★ Port 3 mask option

Input/output mode after reset can be specified

| Pin Names | Status after Reset |                  |                   |
|-----------|--------------------|------------------|-------------------|
|           | Mask Option <1>    | Mask Option <2>  | Mask Option <3>   |
| P30/PCL   | Input              | Low-level output | Low-level output  |
| P31/BUZ   |                    |                  |                   |
| P32       |                    |                  |                   |
| P33       |                    |                  | High-level output |

# 11. INSTRUCTION SET

## (1) Expression formats and description methods of operands

The operand is written in the operand column of each instruction in accordance with the method of use of the instruction operand identifier. For details, refer to "RA75X ASSEMBLER PACKAGE USER'S MANUAL—LANGUAGE (U12385E)". If there are several elements, one of them is selected. Capital letters and the + and – symbols are key words and are written as they are.

For immediate data, appropriate numbers and labels are written.

Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be written. However, there are restrictions in the labels that can be written for fmem and pmem. For details, refer to **User's Manual (U12020E)**.

| Identifier  | Format                                               |
|-------------|------------------------------------------------------|
| reg         | X, A, B, C, D, E, H, L                               |
| reg1        | X, B, C, D, E, H, L                                  |
| rp          | XA, BC, DE, HL                                       |
| rp1         | BC, DE, HL                                           |
| rp2         | BC, DE                                               |
| rp'         | XA, BC, DE, HL, XA', BC', DE', HL'                   |
| rp'1        | BC, DE, HL, XA', BC', DE', HL'                       |
| rpa         | HL, HL+, HL–, DE, DL                                 |
| rpa1        | DE, DL                                               |
| n4          | 4-bit immediate data or label                        |
| n8          | 8-bit immediate data or label                        |
| mem         | 8-bit immediate data or label <sup>Note</sup>        |
| bit         | 2-bit immediate data or label                        |
| fmem        | FB0H-FBFH, FF0H-FFFH immediate data or label         |
| pmem        | FC0H-FFFH immediate data or label                    |
| addr, addr1 | 0000H-0FFFH immediate data or label                  |
| caddr       | 12-bit immediate data or label                       |
| faddr       | 11-bit immediate data or label                       |
| taddr       | 20H-7FH immediate data (where bit $0 = 0$ ) or label |
| PORTn       | PORT3, PORT8, PORT10                                 |
| IExxx       | IEBT, IET0, IE1, IEW                                 |
| RBn         | RB0-RB3                                              |
| MBn         | MB0, MB1, MB15                                       |

Note mem can be only used for even address in 8-bit data processing.

| , .   | • •                                     |
|-------|-----------------------------------------|
| А     | : A register, 4-bit accumulator         |
| В     | : B register                            |
| С     | : C register                            |
| D     | : D register                            |
| E     | : E register                            |
| Н     | : H register                            |
| L     | : L register                            |
| Х     | : X register                            |
| XA    | : XA register pair; 8-bit accumulator   |
| BC    | : BC register pair                      |
| DE    | : DE register pair                      |
| HL    | : HL register pair                      |
| XA'   | : XA' expanded register pair            |
| BC'   | : BC' expanded register pair            |
| DE'   | : DE' expanded register pair            |
| HL'   | : HL' expanded register pair            |
| PC    | : Program counter                       |
| SP    | : Stack pointer                         |
| CY    | : Carry flag, bit accumulator           |
| PSW   | : Program status word                   |
| MBE   | : Memory bank enable flag               |
| RBE   | : Register bank enable flag             |
| PORTn | : Port n (n = 3, 8, 10)                 |
| IME   | : Interrupt master enable flag          |
| IPS   | : Interrupt priority selection register |
| IExxx | : Interrupt enable flag                 |
| RBS   | : Register bank selection register      |
| MBS   | : Memory bank selection register        |
| PCC   | : Processor clock control register      |
| •     | : Separation between address and bit    |
| (xx)  | : The contents addressed by xx          |
| ххН   | : Hexadecimal data                      |
|       |                                         |

(2) Legend in explanation of operation

| *1  | MB = MBE·MBS<br>(MBS = 0, 1, 15)                                                                 |                           |
|-----|--------------------------------------------------------------------------------------------------|---------------------------|
| *2  | MB = 0                                                                                           |                           |
| *3  | MBE = 0 : MB = 0 (000H to 07FH)<br>MB = 15 (F80H to FFFH)<br>MBE = 1 : MB = MBS (MBS = 0, 1, 15) | Data memory addressing    |
| *4  | MB = 15, fmem = FB0H to FBFH, FF0H to FFFH                                                       |                           |
| *5  | MB = 15, pmem = FC0H to FFFH                                                                     | ↓<br>↓                    |
| *6  | addr = 000H to FFFH                                                                              | A A                       |
| *7  | addr = (Current PC) - 15 to (Current PC) - 1<br>(Current PC) + 2 to (Current PC) + 16            |                           |
|     | addr1 = (Current PC) - 15 to (Current PC) - 1<br>(Current PC) + 2 to (Current PC) + 16           | Program memory addressing |
| *8  | caddr = 000H to FFFH                                                                             |                           |
| *9  | faddr = 0000H to 07FFH                                                                           |                           |
| *10 | taddr = 0020H to 007FH                                                                           |                           |
| *11 | addr1 = 000H to FFFH                                                                             |                           |

#### (3) Explanation of symbols under addressing area column

Remarks 1. MB indicates memory bank that can be accessed.

- 2. In \*2, MB = 0 independently of how MBE and MBS are set.
- 3. In \*4 and \*5, MB = 15 independently of how MBE and MBS are set.
- 4. \*6 to \*11 indicate the areas that can be addressed.

## (4) Explanation of number of machine cycles column

S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: S = 0
- When the skipped instruction is a 1- or 2-byte instruction: S = 1
- When the skipped instruction is a 3-byte instruction Note: S = 2

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction

#### Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock (= tcy); time can be selected from among four types by setting PCC.

| Instruction<br>group    | Mnemonic | Operand   | Number<br>of bytes | Machine<br>cycles | Operation                                          | Addressing area | Skip condition  |
|-------------------------|----------|-----------|--------------------|-------------------|----------------------------------------------------|-----------------|-----------------|
| Transfer<br>instruction | MOV      | A, #n4    | 1                  | 1                 | $A \leftarrow n4$                                  |                 | String effect A |
|                         |          | reg1, #n4 | 2                  | 2                 | reg1 ← n4                                          |                 |                 |
|                         |          | XA, #n8   | 2                  | 2                 | XA ← n8                                            |                 | String effect A |
|                         |          | HL, #n8   | 2                  | 2                 | HL ← n8                                            |                 | String effect B |
|                         |          | rp2, #n8  | 2                  | 2                 | rp2 ← n8                                           |                 |                 |
|                         |          | A, @HL    | 1                  | 1                 | $A \leftarrow (HL)$                                | *1              |                 |
|                         |          | A, @HL+   | 1                  | 2+S               | $A \leftarrow (HL)$ , then $L \leftarrow L+1$      | *1              | L = 0           |
|                         |          | A, @HL-   | 1                  | 2+S               | $A \leftarrow (HL)$ , then $L \leftarrow L-1$      | *1              | L = FH          |
|                         |          | A, @rpa1  | 1                  | 1                 | $A \leftarrow (rpa1)$                              | *2              |                 |
|                         |          | XA, @HL   | 2                  | 2                 | $XA \leftarrow (HL)$                               | *1              |                 |
|                         |          | @HL, A    | 1                  | 1                 | $(HL) \leftarrow A$                                | *1              |                 |
|                         |          | @HL, XA   | 2                  | 2                 | $(HL) \leftarrow XA$                               | *1              |                 |
|                         |          | A, mem    | 2                  | 2                 | $A \leftarrow (mem)$                               | *3              |                 |
|                         |          | XA, mem   | 2                  | 2                 | $XA \leftarrow (mem)$                              | *3              |                 |
|                         |          | mem, A    | 2                  | 2                 | (mem) ← A                                          | *3              |                 |
|                         |          | mem, XA   | 2                  | 2                 | (mem) ← XA                                         | *3              |                 |
|                         |          | A, reg    | 2                  | 2                 | $A \leftarrow reg$                                 |                 |                 |
|                         |          | XA, rp'   | 2                  | 2                 | $XA \leftarrow rp'$                                |                 |                 |
|                         |          | reg1, A   | 2                  | 2                 | reg1 ← A                                           |                 |                 |
|                         |          | rp'1, XA  | 2                  | 2                 | rp'1 ← XA                                          |                 |                 |
|                         | ХСН      | A, @HL    | 1                  | 1                 | $A \leftrightarrow (HL)$                           | *1              |                 |
|                         |          | A, @HL+   | 1                  | 2+S               | $A \leftrightarrow (HL)$ , then $L \leftarrow L+1$ | *1              | L = 0           |
|                         |          | A, @HL-   | 1                  | 2+S               | A $\leftrightarrow$ (HL), then L $\leftarrow$ L–1  | *1              | L = FH          |
|                         |          | A, @rpa1  | 1                  | 1                 | $A \leftrightarrow (rpa1)$                         | *2              |                 |
|                         |          | XA, @HL   | 2                  | 2                 | $XA \leftrightarrow (HL)$                          | *1              |                 |
|                         |          | A, mem    | 2                  | 2                 | $A \leftrightarrow (mem)$                          | *3              |                 |
|                         |          | XA, mem   | 2                  | 2                 | $XA \leftrightarrow (mem)$                         | *3              |                 |
|                         |          | A, reg1   | 1                  | 1                 | $A \leftrightarrow reg1$                           |                 |                 |
|                         |          | XA, rp'   | 2                  | 2                 | $XA \leftrightarrow rp'$                           |                 |                 |
| Table                   | MOVT     | XA, @PCDE | 1                  | 3                 | $XA \leftarrow (PC_{^{11-8}}+DE)_{\text{ROM}}$     |                 |                 |
| reference               |          | XA, @PCXA | 1                  | 3                 | $XA \leftarrow (PC_{^{11-8}}+XA)_{ROM}$            |                 |                 |
|                         |          | XA, @BCDE | 1                  | 3                 | $XA \leftarrow (BCDE)_{ROM}  {}^{Note}$            | *6              |                 |
|                         |          | XA, @BCXA | 1                  | 3                 | XA ← (BCXA) <sub>ROM</sub> Note                    | *6              |                 |

**Note** Be sure to assign "0" to register B.

| Instruction<br>group                        | Mnemonic | Operand        | Number<br>of bytes | Machine<br>cycles | Operation                                                      | Addressing<br>area | Skip condition |
|---------------------------------------------|----------|----------------|--------------------|-------------------|----------------------------------------------------------------|--------------------|----------------|
| Bit transfer                                | MOV1     | CY, fmem.bit   | 2                  | 2                 | $CY \leftarrow (fmem.bit)$                                     | *4                 |                |
|                                             |          | CY, pmem.@L    | 2                  | 2                 | $CY \gets (pmem_{72} + L_{32}.bit(L_{10}))$                    | *5                 |                |
|                                             |          | CY, @H+mem.bit | 2                  | 2                 | CY ← (H+mem <sub>3-0</sub> .bit)                               | *1                 |                |
|                                             |          | fmem.bit, CY   | 2                  | 2                 | $(fmem.bit) \leftarrow CY$                                     | *4                 |                |
|                                             |          | pmem.@L, CY    | 2                  | 2                 | $(pmem_{7-2}\text{+}L_{3-2}.bit(L_{1-0})) \leftarrow CY$       | *5                 |                |
|                                             |          | @H+mem.bit, CY | 2                  | 2                 | (H+mem₃₀.bit) ← CY                                             | *1                 |                |
| Operation                                   | ADDS     | A, #n4         | 1                  | 1+S               | A ← A+n4                                                       |                    | carry          |
|                                             |          | XA, #n8        | 2                  | 2+S               | $XA \leftarrow XA + n8$                                        |                    | carry          |
|                                             |          | A, @HL         | 1                  | 1+S               | $A \gets A\text{+}(HL)$                                        | *1                 | carry          |
|                                             |          | XA, rp'        | 2                  | 2+S               | $XA \leftarrow XA + rp'$                                       |                    | carry          |
|                                             |          | rp'1, XA       | 2                  | 2+S               | rp'1 ← rp'1+XA                                                 |                    | carry          |
|                                             | ADDC     | A, @HL         | 1                  | 1                 | $A,CY \leftarrow A\text{+}(HL)\text{+}CY$                      | *1                 |                |
|                                             |          | XA, rp'        | 2                  | 2                 | $XA, CY \leftarrow XA+rp'+CY$                                  |                    |                |
|                                             |          | rp'1, XA       | 2                  | 2                 | $rp'1, CY \leftarrow rp'1+XA+CY$                               |                    |                |
|                                             | SUBS     | A, @HL         | 1                  | 1+S               | $A \leftarrow A\text{-}(HL)$                                   | *1                 | borrow         |
|                                             |          | XA, rp'        | 2                  | 2+S               | $XA \leftarrow XA-rp'$                                         |                    | borrow         |
|                                             |          | rp'1, XA       | 2                  | 2+S               | rp'1 ← rp'1−XA                                                 |                    | borrow         |
|                                             | SUBC     | A, @HL         | 1                  | 1                 | $A,CY \leftarrow A\text{-}(HL)\text{-}CY$                      | *1                 |                |
|                                             |          | XA, rp'        | 2                  | 2                 | XA, CY ← XA–rp'–CY                                             |                    |                |
|                                             |          | rp'1, XA       | 2                  | 2                 | $rp'1, CY \leftarrow rp'1-XA-CY$                               |                    |                |
|                                             | AND      | A, #n4         | 2                  | 2                 | $A \leftarrow A \wedge n4$                                     |                    |                |
|                                             |          | A, @HL         | 1                  | 1                 | $A \gets A \land (HL)$                                         | *1                 |                |
|                                             |          | XA, rp'        | 2                  | 2                 | $XA \leftarrow XA \land rp'$                                   |                    |                |
|                                             |          | rp'1, XA       | 2                  | 2                 | $rp'1 \leftarrow rp'1 \land XA$                                |                    |                |
|                                             | OR       | A, #n4         | 2                  | 2                 | $A \leftarrow A \lor n4$                                       |                    |                |
|                                             |          | A, @HL         | 1                  | 1                 | $A \leftarrow A \lor (HL)$                                     | *1                 |                |
|                                             |          | XA, rp'        | 2                  | 2                 | $XA \leftarrow XA \lor rp'$                                    |                    |                |
|                                             |          | rp'1, XA       | 2                  | 2                 | $rp'1 \leftarrow rp'1 \lor XA$                                 |                    |                |
|                                             | XOR      | A, #n4         | 2                  | 2                 | A ← A ¥ n4                                                     |                    |                |
|                                             |          | A, @HL         | 1                  | 1                 | $A \leftarrow A \neq (HL)$                                     | *1                 |                |
|                                             |          | XA, rp'        | 2                  | 2                 | XA ← XA ¥ rp'                                                  |                    |                |
|                                             |          | rp'1, XA       | 2                  | 2                 | rp'1 ← rp'1 ¥ XA                                               |                    |                |
| Accumulator<br>manipulation<br>instructions | RORC     | A              | 1                  | 1                 | $CY \leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$ |                    |                |
|                                             | NOT      | A              | 2                  | 2                 | $\overline{A} \to A$                                           |                    |                |
| Increment                                   | INCS     | reg            | 1                  | 1+S               | $reg \leftarrow reg+1$                                         |                    | reg = 0        |
| and<br>Decrement                            |          | rp1            | 1                  | 1+S               | rp1 ← rp1+1                                                    |                    | rp1 = 00H      |
| nstructions                                 |          | @HL            | 2                  | 2+S               | $(HL) \leftarrow (HL)+1$                                       | *1                 | (HL) = 0       |
|                                             |          | mem            | 2                  | 2+S               | $(mem) \leftarrow (mem)+1$                                     | *3                 | (mem) = 0      |
|                                             | DECS     | reg            | 1                  | 1+S               | reg ← reg–1                                                    |                    | reg = FH       |
|                                             |          | rp'            | 2                  | 2+S               | rp' ← rp'–1                                                    |                    | rp' = FFH      |

| Instruction<br>group         | Mnemonic | Operand        | Number<br>of bytes | Machine<br>cycles             | Operation                                                                                        | Addressing area | Skip condition |
|------------------------------|----------|----------------|--------------------|-------------------------------|--------------------------------------------------------------------------------------------------|-----------------|----------------|
| Comparison                   | SKE      | reg, #n4       | 2                  | 2+S                           | Skip if reg = n4                                                                                 |                 | reg = n4       |
| instruction                  |          | @HL, #n4       | 2                  | 2+S                           | Skip if (HL) = n4                                                                                | *1              | (HL) = n4      |
|                              |          | A, @HL         | 1                  | 1+S                           | Skip if A = (HL)                                                                                 | *1              | A = (HL)       |
|                              |          | XA, @HL        | 2                  | 2+S                           | Skip if XA = (HL)                                                                                | *1              | XA = (HL)      |
|                              |          | A, reg         | 2                  | 2+S                           | Skip if A = reg                                                                                  |                 | A = reg        |
|                              |          | XA, rp'        | 2                  | 2+S                           | Skip if XA = rp'                                                                                 |                 | XA = rp'       |
| Carry flag                   | SET1     | СҮ             | 1                  | 1                             | CY ← 1                                                                                           |                 |                |
| manipulation<br>instruction  | CLR1     | СҮ             | 1                  | 1                             | $CY \leftarrow 0$                                                                                |                 |                |
|                              | SKT      | CY             | 1                  | 1+S                           | Skip if CY = 1                                                                                   |                 | CY = 1         |
| NOT1                         | CY       | 1              | 1                  | $CY \leftarrow \overline{CY}$ |                                                                                                  |                 |                |
| Memory bit                   | SET1     | mem.bit        | 2                  | 2                             | (mem.bit) ← 1                                                                                    | *3              |                |
| manipulation<br>instructions |          | fmem.bit       | 2                  | 2                             | (fmem.bit) ←1                                                                                    | *4              |                |
|                              |          | pmem.@L        | 2                  | 2                             | (pmem <sub>7-2</sub> +L <sub>3-2</sub> .bit(L <sub>1-0</sub> )) ←1                               | *5              |                |
|                              |          | @H+mem.bit     | 2                  | 2                             | (H+mem <sub>3−0</sub> .bit) ←1                                                                   | *1              |                |
| CLR1                         | mem.bit  | 2              | 2                  | (mem.bit) ←0                  | *3                                                                                               |                 |                |
|                              | fmem.bit | 2              | 2                  | (fmem.bit) ←0                 | *4                                                                                               |                 |                |
|                              |          | pmem.@L        | 2                  | 2                             | (pmem <sub>7-2</sub> +L <sub>3-2</sub> .bit(L <sub>1-0</sub> )) ←0                               | *5              |                |
|                              |          | @H+mem.bit     | 2                  | 2                             | (H+mem₃₋₀.bit) ←0                                                                                | *1              |                |
|                              | SKT      | mem.bit        | 2                  | 2+S                           | Skip if (mem.bit) = 1                                                                            | *3              | (mem.bit) = 1  |
|                              |          | fmem.bit       | 2                  | 2+S                           | Skip if (fmem.bit) = 1                                                                           | *4              | (fmem.bit) = 1 |
|                              |          | pmem.@L        | 2                  | 2+S                           | Skip if (pmem <sub>7-2</sub> +L <sub>3-2</sub> .bit(L <sub>1-0</sub> )) = 1                      | *5              | (pmem.@L) =    |
|                              |          | @H+mem.bit     | 2                  | 2+S                           | Skip if (H+mem₃₋₀.bit) = 1                                                                       | *1              | (@H+mem.bit) = |
|                              | SKF      | mem.bit        | 2                  | 2+S                           | Skip if (mem.bit) = 0                                                                            | *3              | (mem.bit) = 0  |
|                              |          | fmem.bit       | 2                  | 2+S                           | Skip if (fmem.bit) = 0                                                                           | *4              | (fmem.bit) = 0 |
|                              |          | pmem.@L        | 2                  | 2+S                           | Skip if (pmem <sub>7-2</sub> +L <sub>3-2</sub> .bit(L <sub>1-0</sub> )) = 0                      | *5              | (pmem.@L) =    |
|                              |          | @H+mem.bit     | 2                  | 2+S                           | Skip if (H+mem₃₋₀.bit) = 0                                                                       | *1              | (@H+mem.bit) : |
|                              | SKTCLR   | fmem.bit       | 2                  | 2+S                           | Skip if (fmem.bit) = 1 and clear                                                                 | *4              | (fmem.bit) = 1 |
|                              |          | pmem.@L        | 2                  | 2+S                           | Skip if (pmem <sub>7-2</sub> +L <sub>3-2</sub> .bit(L <sub>1-0</sub> )) = 1 and clear            | *5              | (pmem.@L) =    |
|                              |          | @H+mem.bit     | 2                  | 2+S                           | Skip if (H+mem₃-₀.bit) = 1 and clear                                                             | *1              | (@H+mem.bit) : |
|                              | AND1     | CY, fmem.bit   | 2                  | 2                             | $CY \gets CYA \text{ (fmem.bit)}$                                                                | *4              |                |
|                              |          | CY, pmem.@L    | 2                  | 2                             | $CY \leftarrow CYA \text{ (pmem}_{7\text{-}2}\text{+}L_{3\text{-}2}\text{.}bit(L_{1\text{-}0}))$ | *5              |                |
|                              |          | CY, @H+mem.bit | 2                  | 2                             | $CY \gets CY \land (H\text{+}mem_{30}.bit)$                                                      | *1              |                |
|                              | OR1      | CY, fmem.bit   | 2                  | 2                             | $CY \gets CY \lor (fmem.bit)$                                                                    | *4              |                |
|                              |          | CY, pmem.@L    | 2                  | 2                             | $CY \gets CY \lor (pmem_{72}\text{+}L_{32}.bit(L_{10}))$                                         | *5              |                |
|                              |          | CY, @H+mem.bit | 2                  | 2                             | $CY \gets CY \lor (H\text{+}mem_{30}.bit)$                                                       | *1              |                |
|                              | XOR1     | CY, fmem.bit   | 2                  | 2                             | $CY \leftarrow CY + (fmem.bit)$                                                                  | *4              |                |
|                              |          | CY, pmem.@L    | 2                  | 2                             | $CY \gets CY \nleftrightarrow (pmem_{72}\texttt{+}L_{32}\texttt{.bit}(L_{10}))$                  | *5              |                |
|                              |          | CY, @H+mem.bit | 2                  | 2                             | CY ← CY <del>∨</del> (H+mem₃₀.bit)                                                               | *1              |                |

| Instruction<br>group                        | Mnemonic                                              | Operand | Number<br>of bytes              | Machine<br>cycles | Operation                                                                                                                                                                                                                                                                | Addressing area | Skip condition |
|---------------------------------------------|-------------------------------------------------------|---------|---------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| Branch<br>instructions                      | BR Note 1                                             | addr    | _                               | _                 | $\begin{array}{l} PC_{11\text{-0}} \leftarrow addr \\ \left( \begin{array}{c} Select \ appropriate \ instruction \ from \ among \\ BR \ !addr, \ BRCB \ !caddr \ and \ BR \ \$addr \\ according \ to \ the \ assembler \ being \ used. \end{array} \right) \end{array}$  | *6              |                |
|                                             |                                                       | addr1   | _                               | _                 | $\begin{array}{l} PC_{^{11\cdot0}} \leftarrow addr1 \\ \left( \begin{array}{c} Select appropriate instruction from \\ among BR \; !addr BRA \; !addr1, \\ BRCB \; !caddr and BR \; \$addr1 \; according \\ to the assembler being used. \end{array} \right) \end{array}$ | *11             |                |
|                                             |                                                       | !addr   | 3                               | 3                 | $PC_{^{11-0}} \leftarrow \mathrm{addr}$                                                                                                                                                                                                                                  | *6              |                |
|                                             |                                                       | \$addr  | 1                               | 2                 | $PC_{^{11-0}} \leftarrow addr$                                                                                                                                                                                                                                           | *7              |                |
|                                             | BR \$addr1                                            |         | 1                               | 2                 | $PC_{^{11-0}} \gets addr1$                                                                                                                                                                                                                                               | *7              |                |
|                                             |                                                       | PCDE    | 2                               | 3                 | $PC_{11\text{-}0} \gets PC_{11\text{-}8\text{+}}DE$                                                                                                                                                                                                                      |                 |                |
|                                             |                                                       | PCXA    | 2                               | 3                 | $PC_{11-0} \leftarrow PC_{11-8} + XA$                                                                                                                                                                                                                                    |                 |                |
|                                             | BCDE         2         3         PC₁1-0 ← BCDE Note 2 |         | $PC_{11-0} \gets BCDE^{Note 2}$ | *6                |                                                                                                                                                                                                                                                                          |                 |                |
|                                             |                                                       | BCXA    | 2                               | 3                 | $PC_{11-0} \gets BCXA^{Note 2}$                                                                                                                                                                                                                                          | *6              |                |
|                                             | BRA Note 1                                            | !addr1  | 3                               | 3                 | $PC_{11-0} \leftarrow addr1$                                                                                                                                                                                                                                             | *11             |                |
|                                             | BRCB                                                  | !caddr  | 2                               | 2                 | $PC_{11-0} \gets caddr_{11-0}$                                                                                                                                                                                                                                           | *8              |                |
| Subroutine<br>stack control<br>instructions | CALLA Note 1                                          | !addr1  | 3                               | 3                 | $\begin{array}{l} (\text{SP-2}) \gets \text{x, x, MBE, RBE} \\ (\text{SP-6}) (\text{SP-3}) (\text{SP-4}) \gets \text{PC}_{11-0} \\ (\text{SP-5}) \gets 0, 0, 0, 0 \\ \text{PC}_{11-0} \gets \text{addr1}, \text{SP} \gets \text{SP-6} \end{array}$                       | *11             |                |
|                                             | CALL Note 1                                           | !addr   | 3                               | 3                 | $\begin{array}{l} (SP-3) \leftarrow MBE, RBE, 0, 0 \\ (SP-4) (SP-1) (SP-2) \leftarrow PC_{^{11-0}} \\ PC_{^{11-0}} \leftarrow addr, SP \leftarrow SP-4 \end{array}$                                                                                                      | *6              |                |
|                                             |                                                       |         |                                 | 4                 | $\begin{array}{l} (SP-2) \leftarrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                              |                 |                |
|                                             | CALLF Note 1                                          | !faddr  | 2                               | 2                 | $(SP-3) \leftarrow MBE, RBE, 0, 0$<br>$(SP-4) (SP-1) (SP-2) \leftarrow PC_{11-0}$<br>$PC_{11-0} \leftarrow 0+faddr, SP \leftarrow SP-4$                                                                                                                                  | *9              |                |
|                                             |                                                       |         |                                 | 3                 | $\begin{array}{l} (SP-2) \gets x, x, MBE, RBE \\ (SP-6) (SP-3) (SP-4) \gets PC_{11-0} \\ (SP-5) \gets 0, 0, 0, 0 \\ PC_{11-0} \gets 0 \text{+faddr}, SP \gets SP-6 \end{array}$                                                                                          |                 |                |

- **Notes 1.** The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
  - **2.** "0" must be assigned to B register.

| Instruction<br>group                        | Mnemonic    | Operand  | Number<br>of bytes | Machine<br>cycles | Operation                                                                                                                                                                                                                                                                             | Addressing area | Skip condition |
|---------------------------------------------|-------------|----------|--------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| Subroutine<br>stack control<br>instructions | RET Note 1  |          | 1                  | 3                 | $\begin{array}{l} PC_{^{11-0}} \leftarrow (SP) \; (SP+3) \; (SP+2) \\ MBE, \; RBE, \; 0, \; 0 \leftarrow (SP+1), \; SP \leftarrow SP+4 \end{array}$                                                                                                                                   |                 |                |
|                                             |             |          |                    |                   | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                               |                 |                |
|                                             | RETS Note 1 |          | 1                  | 3+S               | $\begin{array}{l} \text{MBE, RBE, 0, 0} \leftarrow (\text{SP+1}) \\ \text{PC}_{11-0} \leftarrow (\text{SP}) (\text{SP+3}) (\text{SP+2}) \\ \text{SP} \leftarrow \text{SP+4} \\ \text{then skip unconditionally} \end{array}$                                                          |                 | Unconditional  |
|                                             |             |          |                    |                   | $ \begin{array}{l} 0,0,0,0 \leftarrow ({\sf SP+1}) \\ {\sf PC}_{11 - 0} \leftarrow ({\sf SP}) \; ({\sf SP+3}) \; ({\sf SP+2}) \\ {\sf x},{\sf x},{\sf MBE},{\sf RBE} \leftarrow ({\sf SP+4}) \\ {\sf SP} \leftarrow {\sf SP+6} \\ {\sf then \; skip \; unconditionally} \end{array} $ |                 |                |
|                                             | RETI Note 1 |          | 1                  | 3                 | $\begin{array}{l} \text{MBE, RBE, 0, 0 \leftarrow (SP+1)} \\ \text{PC}_{11-0} \leftarrow (SP) \ (SP+3) \ (SP+2) \\ \text{PSW} \leftarrow (SP+4) \ (SP+5), \ SP \leftarrow SP+6 \end{array}$                                                                                           |                 |                |
|                                             |             |          |                    |                   | $ \begin{array}{c} 0,0,0,0 \leftarrow ({\sf SP+1}) \\ {\sf PC}_{^{11-0}} \leftarrow ({\sf SP})({\sf SP+3})({\sf SP+2}) \\ {\sf PSW} \leftarrow ({\sf SP+4})({\sf SP+5}),{\sf SP} \leftarrow {\sf SP+6} \end{array} $                                                                  |                 |                |
|                                             | PUSH        | rp       | 1                  | 1                 | $(SP-1)(SP-2) \leftarrow rp, SP \leftarrow SP-2$                                                                                                                                                                                                                                      |                 |                |
|                                             |             | BS       | 2                  | 2                 | $(SP-1) \leftarrow MBS, (SP-2) \leftarrow RBS, SP \leftarrow SP-2$                                                                                                                                                                                                                    |                 |                |
|                                             | POP         | rp       | 1                  | 1                 | $rp \leftarrow (SP+1) (SP), SP \leftarrow SP+2$                                                                                                                                                                                                                                       |                 |                |
|                                             |             | BS       | 2                  | 2                 | $MBS \leftarrow (SP+1),  RBS \leftarrow (SP),  SP \leftarrow SP+2$                                                                                                                                                                                                                    |                 |                |
| Interrupt<br>control                        | EI          |          | 2                  | 2                 | IME (IPS.3) ← 1                                                                                                                                                                                                                                                                       |                 |                |
| instructions                                |             | IExxx    | 2                  | 2                 | IExxx ← 1                                                                                                                                                                                                                                                                             |                 |                |
|                                             | DI          |          | 2                  | 2                 | IME (IPS.3) $\leftarrow$ 0                                                                                                                                                                                                                                                            |                 |                |
|                                             |             | IExxx    | 2                  | 2                 | IExxx ← 0                                                                                                                                                                                                                                                                             |                 |                |
| Input/output<br>instructions                | IN Note 2   | A, PORTn | 2                  | 2                 | $A \leftarrow PORTn \qquad (n = 3, 8, 10)$                                                                                                                                                                                                                                            |                 |                |
|                                             | OUT Note 2  | PORTn, A | 2                  | 2                 | $PORTn \leftarrow A \qquad (n = 3, 8, 10)$                                                                                                                                                                                                                                            |                 |                |
| CPU control                                 | HALT        |          | 2                  | 2                 | Set HALT Mode (PCC.2 $\leftarrow$ 1)                                                                                                                                                                                                                                                  |                 |                |
| mstructions                                 | STOP        |          | 2                  | 2                 | Set STOP Mode (PCC.3 $\leftarrow$ 1)                                                                                                                                                                                                                                                  |                 |                |
|                                             | NOP         |          | 1                  | 1                 | No Operation                                                                                                                                                                                                                                                                          |                 |                |
| Special<br>instructions                     | SEL         | RBn      | 2                  | 2                 | $RBS \gets n \qquad \qquad (n = 0\text{-}3)$                                                                                                                                                                                                                                          |                 |                |
|                                             |             | MBn      | 2                  | 2                 | $MBS \gets n \tag{n = 0, 15}$                                                                                                                                                                                                                                                         |                 |                |

**Notes 1.** The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

2. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and MBS must be set to 15.

| Instruction<br>group    | Mnemonic      | Operand | Number<br>of bytes | Machine<br>cycles | Operation                                                                                                                                                                                                                   | Addressing area | Skip condition                               |
|-------------------------|---------------|---------|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|
| Special<br>instructions | GET Note 1, 2 | taddr   | 1                  | 3                 | <ul> <li>When TBR instruction</li> <li>PC<sub>11-0</sub> ← (taddr)<sub>3-0</sub> + (taddr+1)</li> </ul>                                                                                                                     | *10             |                                              |
|                         |               |         |                    |                   | • When TCALL instruction<br>(SP-4) (SP-1) (SP-2) $\leftarrow$ PC <sub>11-0</sub><br>(SP-3) $\leftarrow$ MBE, RBE, 0, 0<br>PC <sub>11-0</sub> $\leftarrow$ (taddr) <sub>3-0</sub> + (taddr+1)<br>SP $\leftarrow$ SP-4        |                 |                                              |
|                         |               |         |                    |                   | • When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.                                                                                                                         |                 | Depending on<br>the reference<br>instruction |
|                         |               |         |                    | 3                 | • When TBR instruction $PC_{11-0} \leftarrow (taddr)_{3-0} + (taddr+1)$                                                                                                                                                     | *10             |                                              |
|                         |               |         |                    | 4                 | • When TCALL instruction<br>$(SP-6) (SP-3) (SP-4) \leftarrow PC_{11-0}$<br>$(SP-5) \leftarrow 0, 0, 0, 0$<br>$(SP-2) \leftarrow x, x, MBE, RBE$<br>$PC_{11-0} \leftarrow (taddr)_{3-0} + (taddr+1)$<br>$SP \leftarrow SP-6$ |                 |                                              |
|                         |               |         |                    | 3                 | • When instruction other than TBR and<br>TCALL instructions<br>(taddr) (taddr+1) instruction is executed.                                                                                                                   |                 | Depending on<br>the reference<br>instruction |

Notes 1. The TBR and TCALL instructions are the table definition assembler directives of the GETI instruction.

2. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

## ★ 12. ELECTRICAL SPECIFICATIONS

### Absolute Maximum Ratings (T<sub>A</sub> = 25 °C)

| Parameter                     | Symbol | Conditions        | Ratings                       | Unit |
|-------------------------------|--------|-------------------|-------------------------------|------|
| Supply voltage                | Vdd    |                   | -0.3 to +7.0                  | V    |
| Input voltage                 | Vi     |                   | −0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output voltage                | Vo     |                   | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| High-level output current     | Іон    | Per pin           | -10                           | mA   |
|                               |        | Total of all pins | -30                           | mA   |
| Low-level output current      | Iol    | Per pin           | 30                            | mA   |
|                               |        | Total of all pins | 220                           | mA   |
| Ambient operating temperature | Та     |                   | -10 to +60                    | °C   |
| Storage temperature           | Tstg   |                   | -65 to +150                   | °C   |

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Capacitance (T<sub>A</sub> = 25  $^{\circ}$ C, V<sub>DD</sub> = 0 V)

| Parameter          | Symbol | Conditions                       | MIN. | TYP. | MAX. | Unit |
|--------------------|--------|----------------------------------|------|------|------|------|
| Input capacitance  | CIN    | f = 1 MHz                        |      |      | 15   | pF   |
| Output capacitance | Соит   | Pins other than tested pins: 0 V |      |      | 15   | pF   |
| I/O capacitance    | Сю     |                                  |      |      | 15   | pF   |

#### Main System Clock Oscillation Circuit Characteristics (TA = -10 to +60 °C, VDD = 2.5 to 5.5 V)

| Oscillator     | Recommended Constants | Parameter                           | Conditions                               | MIN. | TYP. | MAX. | Unit |
|----------------|-----------------------|-------------------------------------|------------------------------------------|------|------|------|------|
| RC oscillation | CL1 CL2               | Oscillation frequency<br>(fcc) Note | $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ | 1.0  |      | 6.0  | MHz  |
|                |                       |                                     | V <sub>DD</sub> = 2.5 to 4.5 V           | 1.0  |      | 5.0  | MHz  |

**Note** The oscillation frequency indicates characteristics of the oscillation circuit only. For the instruction execution time and oscillation frequency characteristics, refer to AC Characteristics.

# Caution When using the main system clock frequency circuit, wire the portion enclosed by the dotted line in the above figure as follows to prevent adverse influence from wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines.
- Do not route the wiring in the vicinity of line through which a high alternating current flows.
- Do not extract any signal from the oscillation circuit.

#### Subsystem Clock Oscillation Circuit Characteristics (TA = -10 to +60 °C, V<sub>DD</sub> = 2.5 to 5.5 V)

| Oscillation           | Parameter                 | Conditions                                        | MIN. | TYP. | MAX. | Unit |
|-----------------------|---------------------------|---------------------------------------------------|------|------|------|------|
| RC oscillation Note 1 | Oscillation frequency     | $V_{\text{DD}} = 5.0 \text{ V} \pm 10 \text{ \%}$ | 27   | 47   | 74   | kHz  |
|                       | (f <sub>CT</sub> ) Note 2 | $V_{\text{DD}} = 3.0 \text{ V} \pm 10 \text{ \%}$ | 27   | 47   | 74   | kHz  |

- **Notes 1.** The subsystem clock oscillation circuit incorporates a resistor (R) and a capacitor (C), and does not have external pins.
  - 2. The oscillation frequency indicates characteristics of the oscillation circuit only. For the instruction execution time and oscillation frequency characteristics, refer to AC Characteristics.

| Parameter                                                   | Symbol | Cond                                                                           | ditions             | MIN.       | TYP. | MAX.   | Unit |
|-------------------------------------------------------------|--------|--------------------------------------------------------------------------------|---------------------|------------|------|--------|------|
| Low-level output current                                    | lol    | Par pin                                                                        |                     |            |      | 15     | mA   |
|                                                             |        | Total of all pins                                                              |                     |            |      | 150    | mA   |
| High-level input voltage                                    | VIH1   | Ports 3, 8, P100-P102                                                          |                     | 0.7Vdd     |      | Vdd    | V    |
|                                                             | VIH2   | P103, RESET                                                                    |                     | 0.8Vdd     |      | Vdd    | V    |
| Low-level input voltage                                     | VIL1   | Ports 3, 8, P100-P102                                                          |                     | 0          |      | 0.3Vdd | V    |
|                                                             | VIL2   | P103, RESET                                                                    |                     | 0          |      | 0.2Vdd | V    |
| High-level output voltage                                   | Vон1   | P31-P33, Ports 8, 10                                                           | Іон = -1.0 mA       | Vdd - 0.5  |      |        | V    |
|                                                             | Vон2   | P30 (HCLK)                                                                     |                     | Vdd - 0.12 |      |        | V    |
| Low-level output voltage                                    | Vol1   | P31-P33, Ports 8, 10                                                           | IoL = 1.6 mA        |            |      | 0.4    | V    |
|                                                             | Vol2   | P30 (HCLK)                                                                     |                     |            |      | 0.19   | V    |
| High-level input leakage                                    | ILIH1  | Vin = Vdd                                                                      | Pins other than CL1 |            |      | 3      | μΑ   |
| current                                                     | ILIH2  | CL1                                                                            | CL1                 |            |      | 20     | μΑ   |
| Low-level input leakage                                     |        | V1N = 0 V                                                                      | Pins other than CL1 |            |      | -3     | μΑ   |
| current                                                     | ILIL2  |                                                                                | CL1                 |            |      | -20    | μΑ   |
| High-level output leakage current                           | Ігон   | Vout = Vdd                                                                     |                     |            |      | 3      | μΑ   |
| Low-level output leakage current                            | Ilol   | Vout = 0 V                                                                     |                     |            |      | -3     | μΑ   |
| Internal pull-up resistor                                   | RL1    | Port 10                                                                        |                     | 50         | 100  | 200    | kΩ   |
|                                                             | RL2    | RESET (Mask option)                                                            |                     | 30         | 60   | 120    | kΩ   |
| LCD drive voltage                                           | VLCD   |                                                                                |                     | 2.5        |      | 5.5    | V    |
| LCD divider resistor                                        | RLCD   |                                                                                |                     | 50         | 100  | 200    | kΩ   |
| LCD output voltage<br>deviation Note 1 (common)             | Vodc   | Note 2<br>$2.5 \text{ V} \leq \text{V}_{\text{LCD}} \leq \text{V}_{\text{DD}}$ |                     | 0          |      | ±0.2   | V    |
| LCD output voltage<br>deviation <sup>Note 1</sup> (segment) | Vods   |                                                                                |                     | 0          |      | ±0.2   | V    |

#### DC Characteristics (TA = -10 to +60 °C, VDD = 2.5 to 5.5 V)

- **Notes 1.** "Voltage deviation" means a difference between the output voltage and the ideal value of the segment and common outputs (V<sub>LCDn</sub>: n = 0, 1, or 2).
  - 2. The LCD controller/driver can select the following three display modes using a mask option:
    - (1) Static : VLCD0 = VLCD
    - (2) 1/2 bias: VLCD0 = VLCD

 $V_{LCD1} = V_{LCD} \times 1/2$ 

(3) 1/3 bias: VLCD0 = VLCD

 $V_{LCD1} = V_{LCD} \times 2/3$  $V_{LCD2} = V_{LCD} \times 1/3$ 

| Parameter             | Symbol     |                                                     | Conditions                                                                            | MIN. | TYP. | MAX. | Unit |
|-----------------------|------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|------|------|------|------|
| Supply current Note 1 | DD1 Note 2 | Main system clock                                   | $V_{DD} = 5.0 \text{ V} \pm 10 \% \text{ Note 3}$                                     |      | 2.1  | 5.3  | mA   |
|                       |            | 3.6 MHz<br>RC oscillation                           | $V_{DD} = 5.0 \text{ V} \pm 10 \text{ \%}, \\ T_{A} = 25 \text{ °C }^{\text{Note 3}}$ |      | 2.1  | 4.2  | mA   |
|                       |            | Operation mode                                      | $V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 4}$                                     |      | 0.70 | 1.8  | mA   |
|                       |            |                                                     | $V_{DD} = 3.0 \text{ V} \pm 10 \text{ \%},$ $T_A = 25 \text{ °C }^{Note 4}$           |      | 0.70 | 1.5  | mA   |
|                       | DD2 Note 2 | Main system clock                                   | $V_{DD} = 5.0 \text{ V} \pm 10 \%$                                                    |      | 1.4  | 3.5  | mA   |
|                       |            | 3.6 MHz<br>RC oscillation                           | $V_{DD} = 5.0 V \pm 10 \%,$<br>$T_A = 25 \ ^{\circ}C$                                 |      | 1.4  | 2.8  | mA   |
|                       |            | HALT mode                                           | $V_{DD} = 3.0 \text{ V} \pm 10 \%$                                                    |      | 0.65 | 1.6  | mA   |
|                       |            |                                                     | $V_{DD} = 3.0 V \pm 10 \%,$<br>$T_A = 25 \ ^{\circ}C$                                 |      | 0.65 | 1.3  | mA   |
|                       | DD3 Note 5 | Subsystem clock<br>RC oscillation<br>Operation mode | $V_{DD} = 5.0 \text{ V} \pm 10 \% \text{ Note 6}$                                     |      | 65   | 163  | μΑ   |
|                       |            |                                                     | $V_{DD} = 5.0 \text{ V} \pm 10 \text{ \%},$ $T_A = 25 \text{ °C }^{\text{Note 6}}$    |      | 65   | 130  | μΑ   |
|                       |            |                                                     | $V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 7}$                                     |      | 18   | 45   | μΑ   |
|                       |            |                                                     | $V_{DD} = 3.0 \text{ V} \pm 10 \text{ \%}, \\ T_A = 25 \text{ °C} \text{ Note 7}$     |      | 18   | 36   | μΑ   |
|                       | DD4 Note 5 | Subsystem clock<br>RC oscillation<br>HALT mode      | $V_{DD} = 5.0 \text{ V} \pm 10 \% \text{ Note 6}$                                     |      | 58   | 150  | μΑ   |
|                       |            |                                                     | $V_{DD} = 5.0 \text{ V} \pm 10 \text{ \%},$ $T_A = 25 \text{ °C }^{\text{Note 6}}$    |      | 58   | 120  | μΑ   |
|                       |            |                                                     | $V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 7}$                                     |      | 9.5  | 25   | μA   |
|                       |            |                                                     | $V_{DD} = 3.0 \text{ V} \pm 10 \text{ \%}, \\ T_A = 25 \text{ °C} \text{ Note 7}$     |      | 9.5  | 20   | μΑ   |
|                       | DD4 Note 8 | STOP mode                                           | VDD = 5.0 V ± 10 %                                                                    |      | 0.05 | 10   | μA   |
|                       |            |                                                     | $V_{DD} = 5.0 V \pm 10 \%,$<br>$T_A = 25 \ ^{\circ}C$                                 |      | 0.05 | 5    | μΑ   |
|                       |            |                                                     | VDD = 3.0 V ± 10 %                                                                    |      | 0.02 | 5    | μΑ   |
|                       |            |                                                     | $V_{DD} = 3.0 V \pm 10 \%,$<br>$T_A = 25 \ ^{\circ}C$                                 |      | 0.02 | 3    | μΑ   |

### DC Characteristics (TA = -10 to +60 $^{\circ}$ C, V<sub>DD</sub> = 2.5 to 5.5 V)

Notes 1. The current flowing through the internal pull-up resistor and LCD divider resistor is not included.

- 2. When an external 6.8-k $\Omega$  resistor is connected. However, the temperature characteristics of the resistor are not included.
- 3. When the  $\mu$ PD753304 operates in the high-speed mode with the processor clock control resistor (PCC) set to 0011.
- 4. When the  $\mu$ PD753304 operates in the low-speed mode with the PCC reset to 0000.
- 5. When the  $\mu$ PD753304 operates with the subsystem clock by setting the system clock control resistor (SCC) to 1001 and stopping the main system clock oscillation.
- 6. The subsystem clock oscillation frequency (fcr) is 60 kHz when V\_DD = 5.0 V  $\pm$  10%.
- 7. The subsystem clock oscillation frequency (fcr) is 55 kHz when Vdb = 3.0 V  $\pm$  10%.
- **8.** When both the main system clock and subsystem clock are stopped by setting the sub oscillation circuit stop enable flag (SOS.3) to 1.

| Parameter                                          | Symbol                             | Conc                                                      | litions                        | MIN. | TYP. | MAX. | Unit |
|----------------------------------------------------|------------------------------------|-----------------------------------------------------------|--------------------------------|------|------|------|------|
| Main system clock                                  | fcc                                | $V_{\text{DD}} = 5.0 \text{ V} \pm 10 \text{ \%},$        |                                | 3.1  | 3.7  | 4.3  | MHz  |
| frequency deviation                                |                                    | R = 6.8 kΩ                                                | T <sub>A</sub> = 25 °C         | 3.3  | 3.7  | 4.0  | MHz  |
|                                                    |                                    | $V_{DD} = 3.0 \text{ V} \pm 10 \%,$<br>R = 6.8 k $\Omega$ |                                | 2.8  | 3.6  | 4.2  | MHz  |
|                                                    |                                    |                                                           | T <sub>A</sub> = 25 °C         | 3.0  | 3.6  | 3.9  | MHz  |
| Subsystem clock frequency                          | fст                                | $V_{\text{DD}} = 5.0 \text{ V} \pm 10 \text{ \%}$         |                                | 27   | 47   | 74   | kHz  |
| deviation                                          |                                    | $V_{\text{DD}} = 3.0 \text{ V} \pm 10 \text{ \%}$         |                                |      | 47   | 74   | kHz  |
| Main system clock duty                             | fduty                              | $V_{DD} = 5.0 \text{ V} \pm 10 \%$                        |                                | 45   |      | 55   | %    |
| Main system clock duty factor Note 1               | $V_{DD} = 3.0 \text{ V} \pm 10 \%$ |                                                           |                                | 40   |      | 60   | %    |
| CPU clock cycle time Note 2                        | tcy                                | Operates with main                                        | V <sub>DD</sub> = 4.5 to 5.5 V | 0.67 |      | 64   | μs   |
| (Minimum instruction<br>execution time = 1 machine |                                    | system clock                                              | V <sub>DD</sub> = 2.5 to 4.5 V | 0.80 |      | 64   | μs   |
| cycle)                                             |                                    | Operates with subsyste                                    | m clock                        | 54   |      | 148  | μs   |
| Interrupt input high-,<br>low-level width          | tinth,<br>tintl                    | INT1                                                      |                                | 10   |      |      | μs   |
| RESET low-level width                              | trsl                               |                                                           |                                | 10   |      |      | μs   |


AC Characteristics (T<sub>A</sub> = -10 to +60 °C, V<sub>DD</sub> = 2.5 to 5.5 V)

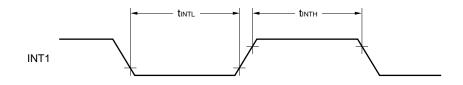
Notes 1. Main system clock duty factor = highlevel width of 1 clock/1 cycle of clock

> 2. The cycle time (minimum instruction execution time) of the CPU clock ( $\Phi$ ) when the device operates with the main system clock is determined by the time constant of the internal capacitor (C: 10-pF typ.) and an externally connected resistor (R), and by the system clock control register (SCC) and processor clock control register (PCC).

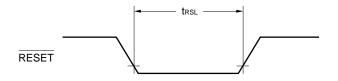
The cycle time of the CPU clock ( $\Phi$ ) when the device operates with the subsystem clock is determined by the time constant of the internal capacitor (C) and an internal resistor (R).


The figure on the right shows the dependency of the cycle time toy on supply voltage VDD when the device operates with the main system clock.




### tcy vs VDD

(Operates with main system clock)

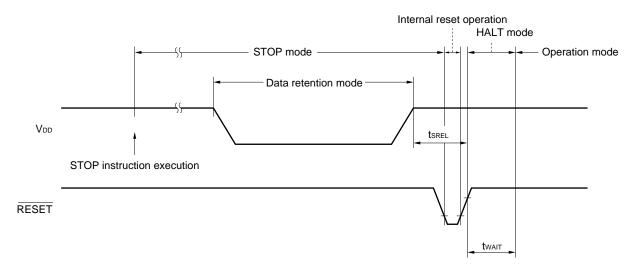

# AC timing test points



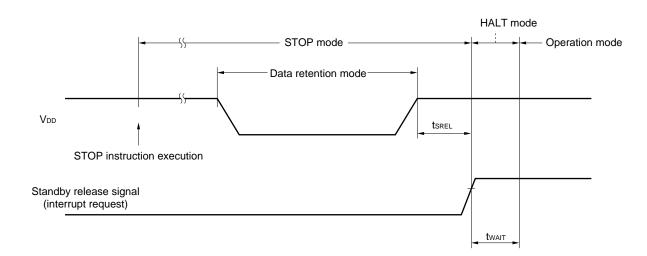
# Interrupt input timing



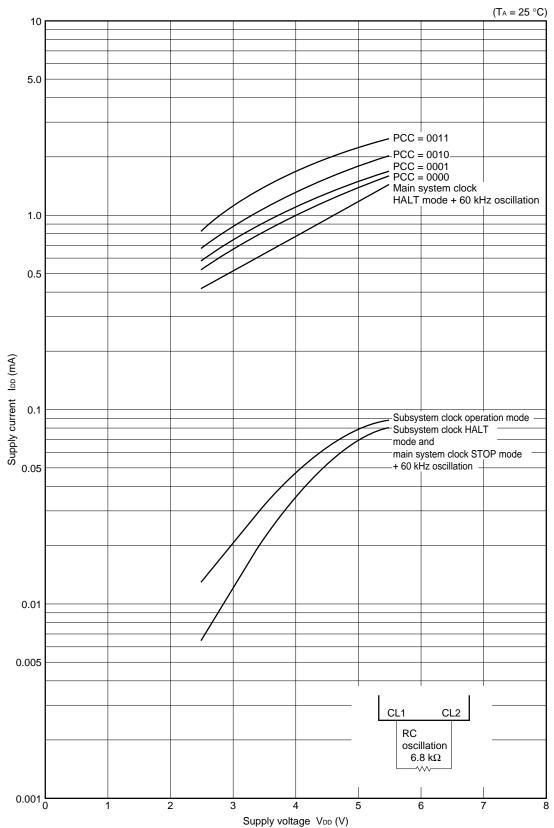
# RESET input timing




# Data retention characteristics of data memory in STOP mode and at low supply voltage (T\_A = -10 to +60 $^\circ\text{C}$ )


| Parameter                 | Symbol        | Conditions                    | MIN. | TYP.   | MAX. | Unit |
|---------------------------|---------------|-------------------------------|------|--------|------|------|
| Release signal setup time | <b>t</b> SREL |                               | 0    |        |      | μs   |
| Oscillation stabilization | twait         | Released by RESET             |      | 56/fcc |      | μs   |
| wait time Note 1          |               | Released by interrupt request |      | Note 2 |      | μs   |

- **Notes 1.** The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
  - 2. Either 2<sup>9</sup>/fcc or no wait can be selected by mask option.


## Data retention timing (when STOP mode released by RESET)



#### Data retention timing (standby release signal: when STOP mode released by interrupt signal)



## ★ 13. CHARACTERISTIC CURVE (reference)



IDD vs VDD (main system clock: 3.6 MHz RC oscillation (with 6.8-kΩ external resistor connected), subsystem clock : 60 kHz RC oscillation)

# APPENDIX A. $\mu$ PD75308B, 753108 AND 753304 FUNCTIONAL LIST

| Parameter                        |                                                        | μPD75308B                                                                                                          | μPD753108                                                                                                                                       | μPD753304                                                                           |  |
|----------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Program memory                   |                                                        | Mask ROM<br>0000H to 1F7FH<br>(8064 × 8 bits)                                                                      | Mask ROM<br>0000H to 1FFFH<br>(8192 × 8 bits)                                                                                                   | Mask ROM<br>0000H to 0FFFH<br>(4096 × 8 bits)                                       |  |
| Data memor                       | ry                                                     | 000H to 1FFH<br>(512 × 4 bits)                                                                                     |                                                                                                                                                 | 000H to 0FFH<br>(256 × 4 bits)                                                      |  |
| CPU                              |                                                        | 75X Standard 75XL CPU                                                                                              |                                                                                                                                                 | I                                                                                   |  |
| Main system                      | n clock oscillation circuit                            | Crystal/ceramic oscillation circ                                                                                   | uit                                                                                                                                             | RC oscillation circuit                                                              |  |
| Subsystem                        | clock oscillation circuit                              | Crystal oscillation circuit                                                                                        |                                                                                                                                                 | RC oscillation circuit                                                              |  |
| Wait time wh                     | en released by RESET signal                            | 2 <sup>17</sup> /fx                                                                                                | 2 <sup>17</sup> /fx, 2 <sup>15</sup> /fx<br>(Selected by mask option)                                                                           | 56/fcc                                                                              |  |
| Wait time wh<br>interrupt occ    | en STOP mode is released by urrence                    | 2 <sup>20</sup> /fx, 2 <sup>17</sup> /fx, 2 <sup>15</sup> /fx, 2 <sup>13</sup> /fx<br>(Selected by setting of BTM) |                                                                                                                                                 | 512/fcc, with no wait<br>(Selected by mask option)                                  |  |
| Clock oscilla<br>STOP instrue    | tion circuit which can executes<br>ction               | Main system clock oscillation cire                                                                                 | cuit                                                                                                                                            | Main system clock oscillation<br>circuit and subsystem clock<br>oscillation circuit |  |
| Instruction<br>execution<br>time | When main system clock is selected                     | 0.95, 1.91, 15.3 μs<br>(during 4.19-MHz operation)                                                                 | <ul> <li>0.95, 1.91, 3.81, 15.3 μs<br/>(during 4.19-MHz operation)</li> <li>0.67, 1.33, 2.67, 10.7 μs<br/>(during 6.0-MHz operation)</li> </ul> | 1.1, 2.2, 4.4, 17.8 μs<br>(during 3.6-MHz operation)                                |  |
|                                  | When subsystem clock is selected                       | 122 $\mu$ s (during 32.768-kHz ope                                                                                 | 85.1 μs (during 47-kHz<br>operation)                                                                                                            |                                                                                     |  |
| Stack                            | SBS register                                           | None SBS.3 = 1: Mk I mode selectio<br>SBS.3 = 0: Mk II mode selectio                                               |                                                                                                                                                 |                                                                                     |  |
|                                  | Stack area                                             | 000H to 0FFH                                                                                                       | 000H to 1FFH                                                                                                                                    | 0000H to 0FFH                                                                       |  |
|                                  | Subroutine call instruction stack operation            | 2-byte stack                                                                                                       | When Mk I mode: 2-byte stack<br>When Mk II mode: 3-byte stack                                                                                   |                                                                                     |  |
| Instruction                      | BRA !addr1<br>CALLA !addr1                             | Unavailable                                                                                                        | When Mk I mode: unavailable<br>When Mk II mode: available                                                                                       |                                                                                     |  |
|                                  | MOVT XA, @BCDE<br>MOVT XA, @BCXA<br>BR BCDE<br>BR BCXA |                                                                                                                    | Available                                                                                                                                       |                                                                                     |  |
|                                  | CALL !addr                                             | 3 machine cycles                                                                                                   | Mk I mode: 3 machine cycles, Mk II mode: 4 machine c                                                                                            |                                                                                     |  |
|                                  | CALLF !faddr                                           | 2 machine cycles                                                                                                   | Mk I mode: 2 machine cycles,                                                                                                                    | Mk II mode: 3 machine cycles                                                        |  |
| I/O port                         | CMOS input                                             | 8                                                                                                                  | 8                                                                                                                                               | 0                                                                                   |  |
|                                  | CMOS input/output                                      | 16                                                                                                                 | 20                                                                                                                                              | 12                                                                                  |  |
|                                  | Bit port output                                        | 8                                                                                                                  | 0                                                                                                                                               | 0                                                                                   |  |
|                                  | N-ch open-drain input/output                           | 8                                                                                                                  | 4                                                                                                                                               | 0                                                                                   |  |
|                                  | Total                                                  | 40                                                                                                                 | 32                                                                                                                                              | 12                                                                                  |  |

 $\star$ 

\*

|                 | Parameter                                                    | μPD75308B                                                                                                                                                                                          | μPD753108                                                                                                                                                                                                                    | μPD753304                                                                                                                                                                        |  |
|-----------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LCD co          | ntroller/driver                                              | Segment selection:24/28/32<br>segmentsSegment selection:16/20/24<br>segments(can be changed to CMOS<br>I/O port in 4 time-unit; max. 8)(can be changed to CMOS<br>I/O port in 4 time-unit; max. 8) |                                                                                                                                                                                                                              | Segment selection: 20/24<br>segments<br>(can be changed to CMOS<br>I/O port in 4-time unit; max. 4)                                                                              |  |
|                 |                                                              | Display mode selection: static,<br>duty (1/3 bias)                                                                                                                                                 | , 1/2 duty (1/2 bias), 1/3 duty (1/2                                                                                                                                                                                         | 2 bias), 1/3 duty (1/3 bias), 1/4                                                                                                                                                |  |
| *               |                                                              | On-chip split resistor for LCD d<br>mask option                                                                                                                                                    | Iriver can be specified by using                                                                                                                                                                                             | On-chip split resistor for LCD driver                                                                                                                                            |  |
| *               |                                                              | LCD driving voltage can not be                                                                                                                                                                     | selected                                                                                                                                                                                                                     |                                                                                                                                                                                  |  |
| Timer           |                                                              | <ul> <li>3 channels</li> <li>Basic interval timer: <ol> <li>channel</li> <li>8-bit timer/event counter: <ol> <li>channel</li> <li>Watch timer: 1 channel</li> </ol> </li> </ol></li></ul>          | 5 channels<br>• Basic interval timer/<br>watchdog timer: 1 channel<br>• 8-bit timer/event counter:<br>3 channels<br>(can be used as 16-bit<br>timer/event counter)<br>• Watch timer: 1 channel                               | 3 channels<br>• Basic interval timer/<br>watchdog timer: 1 channel<br>• 8-bit timer counter:<br>1 channel<br>(with subclock source input<br>function)<br>• Watchtimer: 1 channel |  |
| Clock o         | utput (PCL)                                                  | <ul> <li>Φ, 524, 262, 65.5 kHz<br/>(Main system clock:<br/>during 4.19-MHz operation)</li> </ul>                                                                                                   | <ul> <li>Φ, 524, 262, 65.5 kHz<br/>(Main system clock:<br/>during 4.19-MHz operation)</li> <li>Φ, 750, 375, 93.8 kHz<br/>(Main system clock:<br/>during 6.0-MHz operation)</li> </ul>                                        | <ul> <li>Φ, 3.6 MHz, 450 kHz, 225 kHz<br/>(Main system clock:<br/>during 3.6-MHz operation)</li> </ul>                                                                           |  |
| BUZ ou          | tput (BUZ)                                                   | 2 kHz<br>(Main system clock:<br>during 4.19-MHz operation)                                                                                                                                         | <ul> <li>2, 4, 32 kHz<br/>(Main system clock: during<br/>4.19-MHz operation or<br/>subsystem clock:<br/>during 32.768-kHz operation)</li> <li>2.93, 5.86, 46.9 kHz<br/>(Main system clock:<br/>6.0-MHz operation)</li> </ul> | <ul> <li>2.94, 5.88, 47 kHz<br/>(Subsystem clock:<br/>during 47-kHz operation)</li> <li>1.76, 3.52, 28.13-kHz<br/>(Main system clock:<br/>during 3.6-MHz operation)</li> </ul>   |  |
| Serial ir       | terface                                                      | 3 modes are available<br>• 3-wire serial I/O mode MSB/LSB can be selected for transfer first bit<br>• 2-wire serial I/O mode<br>• SBI mode                                                         |                                                                                                                                                                                                                              | None                                                                                                                                                                             |  |
| SOS<br>register | Feedback resistor cut flag<br>(SOS.0)                        | None                                                                                                                                                                                               | Contained                                                                                                                                                                                                                    | None                                                                                                                                                                             |  |
|                 | Subsystem clock oscillation circuit current cut flag (SOS.1) | None Contained                                                                                                                                                                                     |                                                                                                                                                                                                                              | None                                                                                                                                                                             |  |
|                 | Sub oscillation circuit stop<br>enable flag (SOS.3)          | None                                                                                                                                                                                               |                                                                                                                                                                                                                              | Contained                                                                                                                                                                        |  |
| Registe         | r bank selection register (RBS)                              | None Yes                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                                                                                                                                                                  |  |
| Vectore         | d interrupt                                                  | External: 3, internal: 3                                                                                                                                                                           | External: 3, internal: 5                                                                                                                                                                                                     | External: 1, internal: 2                                                                                                                                                         |  |
| Supply          | voltage                                                      | $V_{DD} = 2.0 \text{ to } 6.0 \text{ V}$ $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$                                                                                                                  |                                                                                                                                                                                                                              | $V_{DD} = 2.5 \text{ to } 5.5 \text{ V}$                                                                                                                                         |  |
| Operati         | ng ambient temperature                                       | T <sub>A</sub> = -40 to +85 °C                                                                                                                                                                     |                                                                                                                                                                                                                              | $T_A = -10$ to +60 °C                                                                                                                                                            |  |
| Packag          | 9                                                            | <ul> <li>80-pin plastic QFP<br/>(14 × 20 mm)</li> <li>80-pin plastic QFP<br/>(14 × 14 mm)</li> <li>80-pin plastic TQFP<br/>(Fine pitch) (12 × 12 mm)</li> </ul>                                    | <ul> <li>64-pin plastic QFP<br/>(14 × 14 mm)</li> <li>64-pin plastic QFP<br/>(12 × 12 mm)</li> </ul>                                                                                                                         | <ul> <li>Volume production product:<br/>Pellet/wafer</li> <li>ES product (for evaluation):<br/>42-pin ceramic shrink DIP<br/>(600 mil)</li> </ul>                                |  |

## APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the  $\mu$ PD753304.

In the 75XL series, the relocatable assembler which is common to the series is used in combination with the device file of each product.

#### Language processor

| RA75X relocatable assembler | Host machine        | 0.0                           | Distribution and its | Part number<br>(product name) |
|-----------------------------|---------------------|-------------------------------|----------------------|-------------------------------|
|                             |                     | OS                            | Distribution media   | (product name)                |
|                             | PC-9800 series      | MS-DOS™                       | 3.5-inch 2HD         | μS5A13RA75X                   |
|                             |                     | Ver. 3.30 to<br>Ver. 6.2 Note | 5-inch 2HD           | μ\$5A10RA75X                  |
|                             | IBM PC/AT™ and      | Refer to                      | 3.5-inch 2HC         | μS7B13RA75X                   |
|                             | compatible machines | "OS for IBM PC"               | 5-inch 2HC           | μS7B10RA75X                   |

| Device file | Host machine        |                               |                    | Part number    |
|-------------|---------------------|-------------------------------|--------------------|----------------|
|             |                     | OS                            | Distribution media | (product name) |
|             | PC-9800 series      | MS-DOS                        | 3.5-inch 2HD       | μS5A13DF753304 |
|             |                     | Ver. 3.30 to<br>Ver. 6.2 Note | 5-inch 2HD         | μS5A10DF753304 |
|             | IBM PC/AT and       | Refer to                      | 3.5-inch 2HC       | μS7B13DF753304 |
|             | compatible machines | "OS for IBM PC"               | 5-inch 2HC         | μS7B10DF753304 |

Note Ver.5.00 and later have the task swap function, but it cannot be used for this software.

**Remark** Operation of the assembler and the device file are guaranteed only on the above host machine and OSs.

\*

### Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the  $\mu$ PD753304.

The system configurations are described as follows.

| Hardware | IE-75000-R Note 1  | systems that use the<br>emulation board IE-<br>separately must be u<br>By connecting with th                                         | In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a $\mu$ PD753304, the emulation board IE-75300-R-EM and emulation probe EP-753304DU-R that are sold separately must be used with the IE-75000-R.<br>By connecting with the host machine, efficient debugging can be made.<br>It contains the emulation board IE-75000-R-EM which is connected. |                                    |                        |  |
|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|--|
|          | IE-75001-R         | systems that use the<br>emulation board IE-7<br>separately must be u                                                                 | In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a $\mu$ PD753304, the emulation board IE-75300-R-EM and emulation probe EP-753304DU-R which are sold separately must be used with the IE-75001-R. It can debug the system efficiently by connecting the host machine.                                                                          |                                    |                        |  |
|          | IE-75300-R-EM      | Emulation board for evaluating the application systems that use a $\mu$ PD753304. It must be used with the IE-75000-R or IE-75001-R. |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                        |  |
|          | EP-753304DU-R      | Emulation probe for ES products.<br>It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                        |  |
| Software | IE control program |                                                                                                                                      | 00-R or IE-75001-R to a ve hardware on a host                                                                                                                                                                                                                                                                                                                                                                                                               | host machine via RS-23<br>machine. | 32-C and Centronix I/F |  |
|          |                    | Host machine                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | Part No.               |  |
|          |                    | Host machine                                                                                                                         | OS                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Distribution media                 | (product name)         |  |
|          |                    | PC-9800 series                                                                                                                       | MS-DOS                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5-inch 2HD                       | μS5A13IE75X            |  |
|          |                    |                                                                                                                                      | Ver. 3.30 to<br>Ver. 6.2 <sup>Note 2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                  | 5-inch 2HD                         | μS5A10IE75X            |  |
|          |                    | IBM PC/AT and                                                                                                                        | Refer to                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.5-inch 2HC                       | μS7B13IE75X            |  |
|          |                    | compatible machines                                                                                                                  | "OS for IBM PC"                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-inch 2HC                         | μS7B10IE75X            |  |

Notes 1. Maintenance parts.

2. Ver.5.00 and later have the task swap function, but it cannot be used for this software.

Remark Operation of the IE control program is guaranteed only on the above host machines and OSs.

#### OS for IBM PC

The following IBM PC OS's are supported.

| OS       | Version                                                                   |
|----------|---------------------------------------------------------------------------|
| PC DOS™  | Ver. 5.02 to Ver. 6.3<br>J6.1/V <sup>Note</sup> to J6.3/V <sup>Note</sup> |
| MS-DOS   | Ver. 5.0 to Ver. 6.22<br>5.0/V Note to 6.2/V Note                         |
| IBM DOS™ | J5.02/V Note                                                              |

**Note** Only the English mode is supported.

Caution Ver. 5.0 and later have the task swap function, but it cannot be used for this software.

## APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

### **Device Related Documents**

| Document Name               | Document No.  |          |
|-----------------------------|---------------|----------|
|                             | English       | Japanese |
| μPD753304 Data Sheet        | This document | U11874J  |
| μPD753304 User's Manual     | U12020E       | U12020J  |
| 75XL Series Selection Guide | U10453E       | U10453J  |

### **Development Tool Related Documents**

| Document Name |                                     |  | Document No. |          |
|---------------|-------------------------------------|--|--------------|----------|
|               |                                     |  | English      | Japanese |
| Hardware      | IE-75000-R/IE-75001-R User's Manual |  | EEU-1416     | EEU-846  |
|               | IE-75300-R-EM User's Manual         |  | U11354E      | U11354J  |
|               | EP-753304DU-R User's Manual         |  | U12173E      | U12173J  |
| Software      | RA75X Assembler Package Operation   |  | EEU-1346     | U12622J  |
|               | User's Manual Language              |  | EEU-1363     | U12385J  |

## **Other Related Documents**

| Document Name                                               | Document No. |          |
|-------------------------------------------------------------|--------------|----------|
|                                                             | English      | Japanese |
| IC Package Manual                                           | C10943X      |          |
| Semiconductor Device Mounting Technology Manual             | C10535E      | C10535J  |
| Quality Grades on NEC Semiconductor Devices                 | C11531E      | C11531J  |
| NEC Semiconductor Device Reliability/Quality Control System | C10983E      | C10983J  |
| Electrostatic Discharge (ESD) Test                          | C11892E      | C11892J  |
| Guide to Quality Assurance for Semiconductor Devices        | MEI-1202     | C11893J  |
| Microcomputer related Product Guide - Other Manufacturers   | _            | U11416J  |

# Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

# NOTES FOR CMOS DEVICES -

# **1** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

# **(2)** HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

# **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

#### NEC Electronics Inc. (U.S.) Santa Clara, California

Tel: 800-366-9782 Fax: 800-729-9288

#### NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

#### NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

### NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

#### NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

#### NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

# NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

# MS-DOS is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5